August 1977
Final Report

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

FEDERAL HIGHWAY ADMINISTRATION

Offices of Research \& Development
Washington, D. C. 20590

This repor ${ }^{+}$is the result of research conducted at the University of Arizona for the Federal Highway Administration (FHWA), Office of Research, under FHWA Purchase Order P.0. 5-3-0190. The report will be of interest to those researchers concerned with the earthquake analysis of highway bridges including the processing of strong motion records. It outlines procedures and operational instructions for the digitization and integration of recorded strong motion accelerograms.

Copies of the report are being distributed by FHWA transmittal memorandum. Additional copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.
The United States Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

Technical Report Documentation Page

1. Report No. FHWA RD-77-92	Government Accerssion No_{0}	3. Recipient's Cotolog No .
4. Titlo ond Subtille Digitization and Integration of Strong Motion Accelerograms		5. Repart Dote
7. Aumor's)Haaren A. Miklofsky and William B. Mancini		Orgonizotion R
9. Performing Crganization Name and Address University of Arizona Department of Civil Engineering Tucson, Arizona 85721		11
12. Sponsoring Agency Nome and Address Department of Transportation Federal Highway Administration Office of Research Washington, D. C. 20590		inal Rep
FHWA Contract Manager: James D. Cooper (HRS-11)		
16. Abstroct Procedures for the digitization and integration of Strong-Motion Accelerograms are presented. Operational instructions and digitizing procedures are described for the Electrak Data Tablet/Digitizer, the Benson-Lehner Chart Reader, and the Microfische Film Reader. Optical scanning using the Perkin-Elmer Microdensitometer is also considered; but photographic problems with some Strong-Motion Records limit the use of an optical method for digitization. The Electrak method is considered superior to other methods; the Microfische method gives excellent expedient results when commercial digitizers are unavailable. The computer program developed by Dr. M. D. Trifunac, et.al., at the California Institute of Technology is the basis for the integration procedure. A detailed description of the program is included. It is found that long period errors introduced by the program methodology can seriously affect the accuracy of the resultant time-displacement history. Changes in the high pass filters are needed to correct for these long period errors. When long periods in the frequency range of the error frequencies are part of the strong-motion acceleration record, it may be impossible to guarantee the accuracy of the integrated time-displacement curve. The appendix of the report contains a full listing of the computer program for the CDC 6400 and IBM 360/370 computers. A User's Manual is also included.		
17. Koowordz Accelerograms, Strong Motion, Earthquake Analysis\quad18. Distribution Stotemen No restrictions. This document is available through the National Tech- nical Information Service, Spring- field, Virginia 22161.		
		21. No. of Poges ${ }^{\text {29. Price }}$

Form DOT F 1700.7 (8-72)
Reproduction of completed page outhorized

PREFACE

The authority for conducting this investigation is the Department of Transportation, Contract No. 5-3-0190, Federal Highway Administration, Office of Research, executed with the University of Arizona, Engineering Experiment Station, College of Engineering, Tucson, Arizona 85721.

The principal investigator is Haaren A. Miklofsky, Professor of Civil Engineering and Engineering Mechanics, the University of Arizona. William B. Mancini, a graduate student in Civil Engineering, joined the principal investigator for the summer months of 1976 in the preparation of a Master's Report as part of this research.

The CDC computer research was performed at the computer center of the University of Arizona. The IBM $360 / 370$ conversion was performed at the computer facility of the Tucson Gas and Electric Company, Tucson, Arizona. The IBM Calcomp Plotter of the Phelps Dodge Corporation at Morenci, Arizona, was used to check the plotting subroutine.

This report was prepared by Haaren A. Miklofsky and incorporates part of the Master's Report by William B. Mancini.

ACKNOWLEDGMENTS

Abstract

The authors wish to thank Dr. Arthur Brady, Seismic Engineering Branch, U.S. Geological Survey, for furnishing a contact negative film copy of the Pacoima Dam Accelerogram at the beginning of this research. Thanks are also due Charles O. Meyer, Vice-President, Terra Technology for furnishing a glossy photograph of the A.R. 240 StrongMotion Accelerograph.

Nicholas Cocavessis, Micheil Karbough, and Yiannakis Katsambos, senior students in Civil Engineering at the University of Arizona, assisted the principal investigator during preliminary investigations on instrumentation and computer programs during the spring of 1976.

The authors are indebted to Dr. Edward Shirley for assistance with the use of the Electrak Data Tablet/Digitizer at the Watershed Research Station; Tucson, Arizona, and to Victor Estrella who assisted the authors with the use of the Benson-Lehner machine at the station. The Trak 010 subroutine, Appendix E-2, was written by Steve Kuteroff, former member of the U. S. Watershed staff.

Bahram Raeen, a graduate student in Civil Engineering at the University of Arizona, redigitized the Pacoima Dam record on the Benson-Lehner machine in December 1976.

The principal investigator is indebted to Mr. Ken Saul, Vice President, Tucson Gas and Electric Company, for permission to use the Tucson Gas and Electric IBM 360/370 computer. Special thanks
are due Ken Johnson and William D. Tolbert for assistance with the JCL on that computer.

Appreciation is hereby acknowledged to Mr. John Bolles, Assistant Manager, Phelps Dodge Corporation at Morenci, Arizona, for permission to use the Calcomp Computing Facility at Phelps Dodge. Special thanks are due Ken Williams and Bob Stearley who helped the principal investigator by writing a special PLl program for use with their computer during one long night.

Harry Goforth, Computer Center, University of Arizona, rewrote the Trak 010 subroutine for the IBM 360/370 computer to read the nine-track tapes.

The principal investigator is thankful that Dr. Manfred R. Bottaccini, Professor of Aerospace and Mechanical Engineering at the University of Arizona, became interested in the project in its last phase. Several discussions with Dr. Bottaccini helped the principal investigator pinpoint the source of errors in the Cal. Tech. integration methodology.

Finally the principal investigator owes a debt of gratitude to Jim Cooper, project manager, for his patience and understanding of the problems encountered by the authors in pursuing the research for this report.

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS vii
I. INTRODUCTION 1

1. Subject 1
2. Background 1
3. Computer Program 7
4. Outline of Method 9
5. Reconstruction of Contact Negative 10
6. Digitizing Machines 12
7. Hand Digitizing - Microfische Film Reader 14
II. DIGITIZATION 15
8. Electrak Digitizing Machine 15
9. Mounting the Accelerogram on the Electrak Machine 25
10. Electrak Digitizing 26
11. Digitization Corrections for the Electrak Machine 36
12. Benson-Lehner Reader and Decimal Converter 38
13. Theory of Operation for the Benson-Lehner Machine 38
14. Patchboard Wiring of Benson-Lehner Machine 44
15. Mounting the Accelerograph Record on the Benson- Lehner Machine 47
16. Digitization Operation on the Benson-Lehner Machine 49
17. Digitization Corrections - Benson-Lehner 52
18. Comparison of Electrak and Benson-Lehner Digitizers 53
19. Baseline Corrected Data - Electrak versus Benson- Lehner 56
20. Perkin-Elmer Microdensitometer 56
21. Scan Parameters 61
22. Reduction of Data - Microdensitometer 62
23. Digitization with the Microfische Film Reader 69
III. PHASE1 SUBROUTINE - DIGITIZATION 73
24. Introduction 73
25. Purpose 73
26. Features 74
27. How the PHASE1 Subroutine Works 75
IV. INTEGRATION 80
28. Introduction 80
29. Sources of Errors 80
30. Integration 82
31. Methods of Filtering 83
Page
V. PHASE2 SUBROUTINE - INTEGRATION 87
32. Introduction 87
33. Purpose 87
34. How the PHASE2 Subroutine Works 88
VI. INTEGRATION - MATHEMATICAL FUNCTIONS 97
35. Introduction 97
36. Constant Acceleration Function 97
37. Sawtooth Acceleration Curve 100
38. Cosine Curve 112
39. Justification of Leastsquaring and Filtering 112
40. Nature of Integration 117
41. .625 Hz Sine Curve 118
42. Symmetrical Sawtooth 133
43. Composition Input Data 146
VII. EXPERIMENTATION 150
44. Introduction 150
45. Free Swing Experiment 150
46. Random Motion Experiment 166
47. Discussion 166
48. Displacement Meters 175
VIII. CONCLUSIONS 181
IX. APPENDICES
APPENDIX A - LEASTSQUARES THEORY FOR INTEGRATION PROGRAM
1.1 Introduction A-1
1.2 Parabolic Line Correction - Boyce's Program, New Zealand A-2
1.3 Evaluation of Integrals - Boyce's Program A-6
1.4 Straight Line Correction - Trifunac's Program, Cal. Tech. A-8
APPENDIX B - FILTER MATHEMATICS B-1
APPENDIX C - USER'S INSTRUCTIONS - PROGRAM DIASMA
1.1 PHASE1 C-1
1.2 PHASE2 C-7
APPENDIX D - COMPUTER PROGRAM LISTING - DIASMA D-1
Page
APPENDIX E - TRAK 010 SUBROUTINE
1.1 Introduction E-1
1.2 Purpose E-2
1.3 Subroutine TRAK 010 E-2
1.4 How the Subroutine Works E-3
APPENDIX F - PROGRAM OPSCAN F-1
1.1 Introduction F-1
1.2 User's Instructions $\mathrm{F}-1$
1.3 Program Listing F-7
APPENDIX G - REFERENCES G-1

LIST OF ILLUSTRATIONS

Page
FIGURE 1 - FIRST 28 SECONDS OF STRONG MOTION ACCELER- 2 OGRAM, PACOIMA DAM, SAN FERNANDO EARTHQUAKE, FEBRUARY 9, 1971.
FIGURE 2-a - PHOTOGRAPH OF AR-240 STRONG MOTION ACCELER- 3 OGRAPH, COURTESY CHUCK MEYER, TERRA TECH- NOLOGY, SEATTLE.
FIGURE 2-b - SCHEMATIC DIAGRAM OF TORSION SEISMOMETER. 3
FIGURE 3 - FINAL ACCELERATION, VELOCITY, AND DISPLACE- 6 MENT FOR N76º W PACOIMA DAM COMPONENT FROM CALIFORNIA INSTITUTE OF TECHNOLOGY PUBLI- CATION. (4)
FIGURE 4 - EFFECT OF A CONSTANT CM/SEC DIGITIZING 7 ERROR ON VELOCITY AND DISPLACEMENT.
FIGURE 5 - COPY OF $111 / 2$ SECONDS OF PACOIMA DAM 11 RECORD, AS ORIGINALLY RECORDED. PRINTED AT 65\% OF FULL SIZE.
FIGURE 6 - RECONSTRUCTED RECORD OF FIGURE 5 AFTER THE 13 CURVES WERE INTENSIFIED AND THE BACKGROUND OPAQUED.
FIGURE 7 - ACCELEROGRAM MOUNTED ON TABLE OF ELECTRAK 15 DIGITIZER.
FIGURE 8 - MESH OF MAGWIRES UNDER ELECTRAK PLASTIC 17 TABLE TOP AND SCHEMATIC OF POSITION SENSING.
FIGURE 9-a - MAGNIFIED PORTION OF ACCELEROGRAM. 18
FIGURE 9-b - ELEVATION VIEW OF CURSOR. 18
FIGURE 9-c - TOP VIEW OF CURSOR. 18
FIGURE 10 - ELECTRAK CONSOLE. 20
FIGURE 11-a - ELECTRAK TAPE DRIVE UNIT. 22
FIGURE 11-b - SEQUENCE OF THREADING TAPE, ELECTRAK TAPE 22 DRIVE.

FIGURE	12	- ACCELEROGRAM WITH CONTROL POINTS ADDED.	24
FIGURE	13	- SAMPLE OF OUTPUT DATA LISTED BY SUBROUTINE TRAK010.	27
FIGURE	14	- LISt of input data from subroutine PHASE1.	29
FIGURE	15	- output plot via plottr subroutine, $\mathrm{N} 76^{\circ} \mathrm{W}$ COMPONENT, PACOIMA DAM RECORD.	30
FIGURE	16	- ENLARGED VIEW OF FIRST 1.3 SECONDS OF N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD SHOWING THE LOCATION OF digitized points from electrak data.	31
FIGURE	17	- ENLARGED VIEW OF FIRST 1.3 SECONDS OF PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL. TECH DATA. (8)	32
FIGURE	18	- ENLARGED VIEW OF 3.3 SECONDS TO 4.8 SECONDS OF N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL. TECH DATA.	33
FIGURE	19	- ENLARGED VIEW OF 25.3 SECONDS TO 26.6 SECONDS OF N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL TECH DATA.	34
FIGURE	20	- ENLARGED VIEW OF FIRST 1.3 SECONDS OF S $16{ }^{\circ}$ E PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL TECH DATA.	34
FIGURE	21	- ENLARGED VIEW OF FIRST 1.3 SECONDS OF S $16{ }^{\circ}$ E PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM ELECTRAK DATA.	35
FIGURE	22	- CORRECTIONS TO DIGITIZED DATA, ELECTRAK MACHINE.	37
FIGURE	23	- BENSON-LEHNER CHART READER.	39
FIGURE	24	- IBM-26 CARD PUNCH MACHINE FOR BENSONLEHNER READER.	39
FIGURE	25	- BENSON-LEHNER DECIMAL CONVERTER.	40
FIGURE	26	- BENSON-LEHNER CHART READER SET-UP POSITION.	41

Page
FIGURE 27 - BENSON-LEHNER DECIMAL CONVERTER PATCHBOARD. 43
FIGURE 28 - BASELINE CORRECTED ACCELEROGRAM FOR THE N76 ${ }^{\circ} \mathrm{W}$ COMPONENT, PACOIMA DAM, USING THE ELECTRAK DIGITIZER. 57
FIGURE 29 - BASELINE CORRECTED ACCELEROGRAM FOR THE N76 ${ }^{\circ} \mathrm{W}$ COMPONENT, PACOIMA DAM, USING THE BENSON- LEHNER DIGITIZER. 58
FIGURE 30 - MODEL 1010A PERKIN-ELMER MICRODENSITOMETER. 59
FIGURE 31 - OPTICS OF PERKIN-ELMER MICRODENSITOMETER. 59
FIGURE 32 - RELATIVE TIME-ACCELERATION COORDINATES X - YFOR THE FIRST 200 LINES OF SCAN, MICRO-DENSITOMETER METHOD, PACOIMA DAM RECORD.64
FIGURE 33 - PLOT OF MICRODENSITOMETER DATA FOR 1.3 SECONDS OF RECORD N76 ${ }^{\circ} \mathrm{W}$ COMPONENT, PACOIMA DAM. 66
FIGURE 34 - PLOT OF MICRODENSITOMETER DATA FOR 1.3 SECONDS OF RECORD S16 ${ }^{\circ}$ E COMPONENT, PACOIMA DAM 67
FIGURE 35 - IMPROVED S16E COMPONENT, PACOIMA DAM RECORD, OBTAINED BY CUTTING FILM EMULSION BETWEEN ADJACENT PEAKS AND VALLEYS OF CURVES. 68
FIGURE 36 - SCHEMATIC FOR PROJECTION OF MICROFISCHE FILM READER. 70
FIGURE 37 - MICROFISCHE PROJECTION - FIRST 1.3 SECONDS OF N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD. 72
FIGURE 38 - FLOWCHART OF PHASE1 SUBROUTINE. 79
FIGURE 39 - FLOWCHART OF PHASE2 SUBROUTINE - CAL. TECH. VERSION. 94
FIGURE 40 - PROGRAM HISTORY - CONSTANT TIME-ACCELERATION CURVE - CAL. TECH. VERSION. 97
FIGURE 41 - INTEGRATION OF CONSTANT TIME-ACCELERATION CURVE - CALCULUS PROCEDURE. 99

			Page
FIGURE	42	- INTEGRATION OF SAWTOOTH TIME-ACCELERATION CURVE - CALCULUS PROCEDURE.	101
FIGURE	43	- PROGRAM HISTORY - SAWTOOTH TIME-ACCELERATION CURVE - CAL. TECH. VERSION.	102
FIGURE	44	- PROGRAM HISTORY - SAWTOOTH TIME-ACCELERATION CURVE - NEWWAY VERSION.	107
FIGURE	45	- PROGRAM HISTORY - SAWTOOTH TIME-ACCELERATION CURVE - N2WAY VERSION.	110
FIGURE	46	- PHASE2 RESULTS FOR SINGLE SAWTOOTH TIMEACCELERATION DATA - N3WAY VERSION	111
FIGURE	47	- PHASE2 RESULTS FOR 7 CYCLE COSINE CURVE N3WAY VERSION.	113
FIGURE	48	- PHASE2 RESULTS FOR 7 CYCLE COSINE CURVE N5WAY = 1 VERSION.	114
FIGURE	49	- PHASE2 RESULTS FOR 7 CYCLE COSINE CURVE CAL. TECH. VERSION.	115
FIGURE	50	- PHASE2 RESULTS FOR . 625 HZ SINE CURVE CAL. TECH. VERSION.	119
FIGURE	51-a	- PRINTER PLOT OF . 625 HZ SINE CURVE AT INPUT DATA, 0.01 SECOND INTERVALS.	120
FIGURE	51-b	- PRINTER PLOT OF . 625 HZ SINE CURVE DECIMATED TO 0.02 SECOND INTERVALS	121
FIGURE	$51-c$	- PRINTER PLOT OF . 625 HZ SINE CURVE ACCELERATION AFTER LEASTSQUARING.	123
FIGURE	$51-d$	- PRINTER PLOT OF . 625 HZ SINE CURVE ACCELERATION AFTER HOLOWAY FILTERING.	124
FIGURE	51-e	- PRINTER PLOT OF . 625 HZ SINE CURVE ACCELERATION AFTER ORMSBY FILTERING.	125
FIGURE	$51-\mathrm{f}$	- PRINTER PLOT OF . 625 HZ SINE CURVE ACCELERATION CORRECTED AFTER LEASTSQUARING VELOCITY.	126
FIGURE	$51-\mathrm{g}$	- PRINTER PLOT OF . 625 HZ SINE CURVE LEASTSQUARED VELOCITY PRIOR TO FILTERING.	127

FIGURE 51-h - PRINTER PLOT OF . 625 HZ SINE CURVE - FINAL VELOCITY AFTER FILTERING. 128
FIGURE 51-i - PRINTER PLOT OF . 625 HZ SINE CURVE - INTEGRATED DISPLACEMENT PRIOR TO FILTERING. 129
FIGURE 51-j - PRINTER PLOT OF . 625 HZ SINE CURVE - FINAL DISPLACEMENT AFTER FILTERING. 130
FIGURE 52 - PHASE2 RESULTS FOR . 625 HZ SINE CURVE - N4WAY $=7$. 131
FIGURE 53 - PHASE2 RESULTS FOR . 625 HZ SINE CURVE - N4WAY $=8$. 132
FIGURE 54 - PHASE2 RESULTS FOR . 625 HZ SINE CURVE - N4WAY $=10$. 134
FIGURE 55 - PHASE2 RESULTS FOR SYMMETRICAL SAWTOOTH ACCELERATION - CAL. TECH. VERSION. 135
FIGURE 56-a - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - ACCELERATION PRIOR TO HOLOWAY FILTERING. 136
FIGURE 56-b - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - ACCELERATION AFTER HOLOWAY FILTERING. 137
FIGURE 56-c - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - ORMSBY FILTER OF ACCELERATION 138
FIGURE 56-d - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - ACCELERATION AFTER ORMSBY FILTERING. 139
FIGURE 56-e - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - INTEGRATED VELOCITY 140
FIGURE 56-f - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - FINAL VELOCITY AFTER FILTERING. 141
FIGURE 56-g - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - INTEGRATED DISPLACEMENT. 142
FIGURE 56-h - PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION - FINAL DISPLACEMENT AFTER HIGH-PASS FILTERING AT $1 / 16 \mathrm{HZ}$ 143

| | | Page |
| :--- | :--- | :--- | :--- |
| FIGURE | | |
| 71 | - PHASE2 RESULTS OF FREE SWING RECORD - | |
| | CAL. TECH. VERSION. | |

Page

FIGURE 86 - PHASE2 RESULTS FOR N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD - CAL. TECH. VERSION. DIGITIZATION VIA ELECTRAK MACHINE. 182
FIGURE 87 - PHASE2 RESULTS FOR N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM RECORD - CAL. TECH. VERSION. DIGITIZATION VIA BENSON-LEHNER MACHINE. 183
FIGURE A-1 - INTERVALS FOR SIMPSON'S RULE. A-7
FIGURE A-2 - ACCELERATION-TIME CURVE FOR NUMERICAL INTEGRATION. A-10
FIGURE B-1 - RESPONSE CHART. B-1
FIGURE B-2 - RILTER FREQUENCY RESPONSE. B-8
FIGURE C-1 - SUMMARY OF PROGRAM STEPS FOR DIFFERENT OPTIONS FOR PROGRAM DIASMA. C-12

DIGITIZATION AND INTEGRATION OF
 STRONG MOTION ACCELEROGRAMS

I. Introduction

1. Subject

This report is presented as a procedure for digitizing and processing strong motion earthquake accelerograms. It describes the process by which an earthquake record is used to obtain actual ground acceleration, velocity, and displacement information. The procedure is primarily for use with time-acceleration data originally recorded on film by a mechanical or optical system.

2. Background

Figure 1 shows the first 28 seconds of record at Pacoima Dam, San Fernando, California during the earthquake of February 9, 1971. A full-size contact negative of the record was furnished to the authors by Dr. A. G. Brady, of the U.S. Geological Survey. The accelerogram shown in Figure 1 was recorded by an AR-240 Strong Motion Accelerograph (Figure 2a). The AR-240 accelerograph was formerly manufactured by United ElectroDynamics Inc., and Teledyne Inc., from 1963 to approximately 1970. Its salient features are:
a. Continuous strong motion acceleration record from about 0.1 second after the initial actuating pendulum contact to 7 seconds after the last pendulum contact.
b. Storage capacity of 150 -foot roll of photographic paper record for three orthogonal components of acceleration.
c. A total of eight recorded traces, comprising three fixed reference traces, three variable accelerometer traces, and two timing traces.

[^0]

FIGURE 2-a. PHOTOGRAPH OF AR-240 STRONG MOTION ACCELEROGRAPH, COURTESY OF TERRA TECHNOLOGY CORP., SEATTLE, WASHINGTON

FIGURE 2-b. SCHEMATIC DIAGRAM OF TORSION SEISMOMETER
d. Light-weight (60 pounds total, not including the external batteries) and compact size (16 x 16×14 inches).
e. Integral calibration of seismometer period and damping.
f. Constant velocity paper speed of $2 \mathrm{~cm} / \mathrm{sec}$.
g. Adjustable sensitivity of 7.5 g and range of 0.01 to 1.0 g .

The accelerograph contains three Lehner-Griffith seismometers which are similar to the well-known Wood-Anderson torsion seismometers, using a small mirror, mounted directly on the taut suspension system and equipped with electro-magnetic damping.(1)(2)* Figure 2 b schematically illustrates the operation of the torsion seismometer. A seismic mass consisting of a rectangular many-turned coil of wire is excentrically attached to a taut wire. Electro-magnetic damping is accomplished by surrounding the free portion of the wire by a permanent magnet. By changing the external resistance in the coil circuit the damping can be set to any desired value. An additional advantage of the coil system is that an external electrical signal can be introduced easily into the transducer element for calibration purposes. Mechanical-optical AR-240 recording is accomplished photographically by means of reflected light from a mirror attached to the mass. The AR-240 records on photographic paper 12 inches wide, and has a natural period between 0.055 and 0.065 seconds. Damping is approximately 60% of critical. Timing marks are two per second at $\pm 1 \%$.

When strong earth motion occurs a mass attached to a vertical pendulum moves in a horizontal direction and closes the platinum pendulum contacts which in turn releases telephone type

[^1]relays controlling the drive motor, timing and control circuit, and the light source. This type of relay control coupled with a transistorized light source circuit provides a start delay timing of only about 0.1 seconds from initial contact to full operation. The minimum acceleration required to close the pendulum contacts can be less than 0.01 g .

Processing of accelerogram records takes two general steps: (1) converting the time-acceleration trace to digital information (digitization), and (2) integration and correcting. The first step is a physical task and must be performed with utmost care. The procedures used in the second step are more or less "automatic" i.e., the data is processed through a digital computer and cannot be directly influenced by the user unless he changes the computer program. One cannot emphasize the meticulous accuracy by which the digitization must be done. To put a scale on the accuracy required, let us consider Figure 3 which shows a published plot of the final acceleration, velocity, and displacement of the Pacoima Dam $N 76^{\circ}{ }_{W}{ }^{*}$ component of record by Cal. Tech. (4) The original accelerogram shows a vertical scale of 7.6 centimeters per g or 7.6 centimeters per 981 centimeters $/ \mathrm{sec}^{2}$. If a vertical displacement error in digitizing points of one $\mathrm{cm} / \mathrm{sec}^{2}$ or approximately 0.003 inches occurred during a 30 -second length of record (Figure 4), the end velocity would change by $30 \mathrm{~cm} / \mathrm{sec}$ and the end displacement would change by 450 centimeters. Since the maximum displacement is only 12 centimeters, it can be seen that small errors in digitizing acceleration records can completely distort the displacement record and make it virtually impossible to correct during the integration procedure.

[^2]SAN FERNANDO EARTHQUAKE FEB 9. 1971 - 0600 PST
DISPL $=-10.8 \mathrm{~cm}$

FIGURE 3. FINAL ACCELERATION, VELOCITY, AND DISPLACEMENT FOR N76 ${ }^{\circ} \mathrm{W}$ PACOIMA DAM COMPONENT FROM CALIFORNIA INSTITUTE OF TECHNOLOGY PUBLICATION (4) See footnote pages 2 and 5.

FIGURE 4. EFFECT OF A CONSTANT CM/SEC/SEC DIGITIZING ERROR ON VELOCITY AND DISPLACEMENT
3. Computer Program

Several computer programs described in the literature for the integration of earthquake records were studied, (5), (6), (7) but eventually it was decided to use the Cal. Tech.* program as a basis for integration so that the reader would have an existing list of digitized data of past earthquakes and Cal. Tech's so *The computer program developed by Trifunac and Vijayaraghavan, California Institute of Technology, as given in reference 10, is referred to as the Cal. Tech. program in this report.
called "standardized integrated plots" with which to compare results for future research. (8), (9) The procedure outlined in this report follow those used by the California Institute of Technology, as described in reference (10) with primary differences existing mainly in the programming techniques. The program listed in reference (10) written for the IBM $360 / 370$ machine, utilizes assembly language subroutines for reading, writing, plotting, and storage of information in a production system of records. Also the program as listed would have exceeded the storage capacity of the CDC 6400 computer at the University of Arizona. Therefore, the program was completely rewritten into a more compact form for efficient turn-around time using only Fortran IV statements for both the IBM 360/370 O.S. computer and the CDC 6400 computer.

A single program DAISMA * is used for processing of digitized input data either in card or magnetic tape form, and also for the integration of the processed data. The procedure consists of three șteps:

1. Digitized data on either magnetic tape or cards are first plotted to the identical scale of the accelerogram trace using a subroutine called PLOTTR. Magnetic tape data is punched on cards. The plot of the data is overlain on the original record over a light table and the data is corrected either by hand on the keypunch machine, or by redigitizing.
2. The corrected data is next baseline corrected (subtraction of fixed trace from acceleration record) by resubmitting the card data to the program with control cards to go to subroutine PHASE1, after which baseline corrected data is punched on cards and plotted.

[^3]3. After the examination of the baseline corrected plot, the new cards are again resubmitted to the program with control cards to go to subroutine PHASE2, where the data is integrated to give final values of acceleration, velocity, and displacement and a plot of this information.

4. Outline of Method

The digitizing process (discussed in detail in the next section) consists of converting an analog trace (i.e., the accelerogram) to a digital record of plane coordinates. The sequence of the coordinate data points represent the accelerogram; i.e., if the individual coordinate points were plotted on a two-dimensional graph and each successive point connected by a straight line, a duplicate of the accelerogram would result. Naturally, there is a slight deviation from the original accelerogram, but these deviations become negligible as the number of digitized points increases.

There are several errors inherent in converting an analog trace to digital information. These are classified as (1) systematic errors i.e., errors which continue to occur and have the same magnitude under the same recording conditions and (2) accidental errors, i.e., errors which occur infrequently and may greatly deviate from the true value. Errors and their elimination are discussed in detail.

In order to obtain velocity and displacement from a function representing acceleration, integration of the function is necessary. The integration process is carried out by means of the "Trapezoidal Rule". This is an approximate means of integrating by numerical methods. (The method of integration is discussed in Section IV.)

A filtering technique is used in the processing of data to remove extraneous high and low frequency components of data. Thus only frequencies within a certain "band" are allowed to pass unaltered. This process is called "high (or low) pass" filtering and is discussed in Section IV.

To locate a "baseline", i.e., a line which represents zero acceleration, a least squaring procedure is executed. The data is then "fitted" to this baseline so that all quantities are given as being positive or negative relative to the baseline. Leastsquaring is necessary because the accelerogram trace does not begin until after the earthquake has started. (The earthquake itself triggers the accelerometer). Thus zero acceleration at the beginning of the trace is not given and must be determined by some other means. The method of leastsquaring is presented in Appendix A.

To support and more clearly demonstrate the validity of the general procedure outlined above, experiments are presented in Section VII. In these experiments acceleration traces are prepared. The traces are then processed in the same manner in which an earthquake record (accelerogram) would be processed. In the experiments, however, actual displacements are recorded on film so that they can be compared to displacements computed from the accelerograms.

To obtain similarity between integrated and measured displacements the Cal. Tech. program was slightly modified. The reasons for the modification are given in Sections VI and VII.
5. Reconstruction of Contact Negative

A 35\% reduced print of a part of the contact negative is shown in Figure 5. Some of the lines of the trace were so faint that they were unobserved when the first digitizing work was

FIGURE 5. COPY OF $111 / 2$ SECONDS OF PACOTMA DAM RECORD, AS ORIGINALLY RECORDED. PRINTED AT 65\% OF FULL SIZE
started. Guessing at the location of these lines led to serious errors. Upon examination of the negative over a light table, the extremely faint lines were found with a magnifying glass. Thereupon they were intensified by cutting the emulsion away using a Ramsey Film Line Cutter, while still examing the area under the magnifier. At the same time, it was decided to opaque one negative copy of the record to separate the interfering curves and to blacken the background for studies by an optical digitizing system. Figure 6 shows the reconstructed record which was used in the digitizing process. During optical readout the middle curve was completely opaqued, although it could have been included and separated from top and bottom curves by reprinting from two reconstructed copies.
6. Digitizing Machines

Three digitizing machines were used.

1. The Electrak Digitizer
2. The Benson-Lehner Digitizer
3. The Perkin-Elmer Microdensitometer

The Electrak and Benson-Lehner digitizers are fully described in this report and work was accomplished to completion on these machines. Time allowed only introductory work on the PerkinElmer Microdensitometer; however, photographic problems (to be described) may limit the application of this machine for earthquake record digitization.

FIGURE 6. RECONSTRUCTED RECORD OF FIGURE 5 AFTER THE CURVES WERE INTENSIFIED AND THE BACKGROUND OPAQUED
7. Hand Digitizing - Microfische Film Reader

A novel method of hand digitizing a record with the aid of a microfische film reader is described in Section II. Although the method is time consuming, it is practical when commercial digitizing machines are unavailable, and gives excellent results.

II. DIGITIZATION

1. Electrak Digitizing Machine*

Figure 7 illustrates the TRAK $100^{* *}$ digitizer in use at the Watershed Research Station, Tucson, Arizona. The $36^{\prime \prime} \mathrm{x}$ $48^{\prime \prime}$ active work surface is a white sheet of plastic above a gridwork of wires spaced about $1 / 10^{\prime \prime}$ apart. A current is pulsed through a single wire at the edge of the sheet of magnetic

FIGURE 7. ACCELEROGRAM MOUNTED ON TABLE OF ELECTRAK DIGITIZER

[^4]material causing a planar strain wave to propagate through the sheet. On the surface of the table is a cursor which has a crosshair etched on the reading glass. As the strain wave passes beneath the cursor, an electric signal is produced in a small coil in the cursor. A digital coordinate is produced by timing the delay between the START (current) pulse and the STOP pulse. A second current carrying wire along the adjacent edge of the sheet provides the determination of the other coordinate.

Figure 8 shows the gridwork of wires located under the plastic sheet used in making a two-dimensional determination of the position of the cursor. The "Send" wire is just a one-turn coil through which a current is pulsed. Two such wires are used -- one for the X and one for the Y determinations. They are pulsed at different times to avoid ambiguity. The strain wave propagates down all the wires in one direction simultaneously. The receiving coil is in the crosshair of the cursor above the table surface. The insertion loss of the entire measuring process is low enough to permit accurate determinations even when the cursor is $3 / 16^{\prime \prime}$ above the table surface. Since position sensing is done along the wires instead of across the wires, any location errors of the wires relate to the accuracy as the cosine of the error angle. However, this is a very small number. The resolution of the table at the Watershed Research Station is $0.005^{\prime \prime}$ with an accuracy of $\pm 0.005^{\prime \prime}$.

Figure 9-a shows an enlargement of a section of the Pacoima Dam record. To increase the accuracy of positioning the cursor in the middle of the acceleration curve, a Bausch \& Lomb measuring magnifier was attached over the cursor glass as shown in Figure 9-b, which enlarged the accelerogram curve approximately

FIGURE 8. MESH OF MAGWIRES UNDER ELECTRAK PLASTIC TABLE TOP AND SCHEMATIC OF POSITION SENSING

(a)

(b)

(c)

FIGURE 9-a. MAGNIFIED PORTION OF ACCELEROGRAM
FIGURE 9-b. ELEVATION VIEW OF CURSOR
FIGURE 9-c. TOP VIEW OF CURSOR
to the width shown in Figure 9-a. The cursor (Fig. 9-c) has four buttons each of which may be pushed to record the coordinates of the point in question (located by the crosshair). These buttons are identification buttons and will print out a four-character number along with the coordinate data and can be used to distinquish the digitized components of the accelerogram from each other. It was found convenient,
 curve identification on the console as will shortly be explained.

Figure 10 shows the small floating console and illustrates the position of the various controls. When the console is in operation mode, the display shows the first 16 characters of the 36 character record recorded on the tape. The first four characters, CCCC, represent a four-digit counter, whose starting number is dialed on the four decade thumb wheels shown. As each point is read into the tape this number reduces by 36 characters. When it goes to zero, it reaches the end of a block of data on the tape.

The next six characters comprise the X coordinate from an established zero reference -- with the first character representing the \pm sign. Next follows six more characters representing the Y coordinate preceeded by a sign.

The next 16 characters of the record is alpha-numeric information placed in memory via the electric typewriter. When this keyboard entry is first made into memory, it will be displayed on the console when the FA (Fixed Address) button is depressed (lit up). The alpha-numeric information used by the authors was the title of the record.

The last four characters contain the cursor I.D. (identification) to be assigned to the operator button being

Sample Tape Record $5040+21460+12020$ PACOIMA DAM N76W1111

FIGURE 10. ELECTRAK CONSOLE
used and is written into the display by pressing the buttons marked BI with the CI button depressed (or lit up).

Figure 11 shows the Tape Drive Unit. The operation of the TRAK 100 is as follows:

On Tape Drive
A. Turn the machine on.
B. Mount the tape and follow the sequence of threading shown on the tape drive unit.
C. Press B.O.F. (Beginning of File) button. The tape will advance until it reaches a silver marker on the tape.

On Console

A. Depress the test button.
B. Dial thumbwheel digits which must be a multiple of 36 . The author used 5040 because 504 words was the limiting buffer-in arrangement of words printed by the tape examine routine on the CDC 6400 computer. Each word on the CDC machine is 10 characters.
C. Depress the FA button and type in the identifying alpha-numeric title.
D. Depress the CI button (light on) and press the CI information on the console keyboard, BI. It is recommended that all four numbers be the same, and they must be placed in the leftmost positions on the display, if the main cursor button is to be used.
E. Mount the accelerogram on the table as later described.

FIGURE 11-a. ELECTRAK TAPE DRIVE UNIT

FIGURE 11-b. SEQUENCE OF THREADING TAPE, ELECTRAK TAPE DRIVE
F. Depress the test button again. Place the cursor at the position where a new origin is to be established.* Press the " 0 " button on the console after pressing the cursor button only once. This causes the displayed coordinates to be subtracted from all subsequent readings, thus establishing a new relative origin.
G. Place the cursor over each control point (Figure 12) and record the X and Y coordinates for future use as a check against point displacement of the record or plastic top during digitizing, or matching a correction record after readout by the computer.
H. Depress the operation button (light on). The machine is now ready for digitizing. As each point is recorded by pressing the cursor button, a short "beep" is heard by the operator as the seven track tape is recorded at the rate of 556 bits/inch. When the end of a block of data is recorded (counter goes to zero) a longer beep is heard, signifying an inter-record gap of approximately $3 / 4^{\prime \prime}$ on the tape.
I. When one complete curve is digitized, press the E.O.F. button on the tape drive only once. The tape will record a $3 / 4^{\prime \prime}$ space for inter-record gap followed by an end of file mark, followed by another 3/4" gap before the beginning of information for a new curve.

[^5]
J. When all the record data has been entered on the tape, press the E.O.F. button four times in succession to signify end of information. Once this has been done, no additional information may be recorded on that tape. WARNING: If the machine is turned off prior to end of information, it will not be possible to add additional data on the tape. There is no provision in the TRAK 100 for skipping tape files.

2. Mounting the Accelerogram on the Electrak Machine

Figure 12 shows a typical earthquake accelerogram recorded on film. It consists of three components of an earthquake record with a fixed trace for each record. To this accelerogram a series of eight control points represented by triangles has been added.

The accelerogram is mounted on the digitizing table so that one of the fixed traces is parallel to the lower table frame. With the test button depressed on the console the cursor is used for final adjustment of the accelerogram position on the table by reading the Y position on the console of several points along the fixed trace. As long as the test button is depressed no information will be recorded on the tape, but the console will still display coordinate data as per location of the crosshair on the cursor. When most of the fixed trace points have approximately the same Y coordinate, the accelerogram is firmly attached to the table top with masking tape along its top and bottom edges.

The coordinate location of all control points are recorded for future reference. Now one is ready to record digitized data by depressing the operate button on the console.

Electrak Digitizing

Figure 13 shows a sample of recorded information of coordinate data for the $\mathrm{N} 76^{\circ} \mathrm{W}$ component. This data was obtained from a seven-track tape using a special examine subroutine called TRAK 010 whose purpose was to check valid character input to the tape. Two major problems were encountered in translating the information from the seventrack tape used by the Watershed Research Station Electrak machine to the CDC computer. First, the + and - characters identifiable by the TRAK 100 were not the same for the CDC computer since the recorded 556 bits/inch data was in a modified external BCD code on the tape. Subroutine TRAK 010 forms the conversion. The second problem encountered was that TRAK 100 would drop characters occasionally resulting in a garbled field of data. The TRAK 010 examines each character in sequence on the tape and when the sequence within a 36 -character stream is correct, it records the coordinates of the data point represented by the stream. Details concerning TRAK 010 are given in Appendix E.

For nine-track tapes operational on the IBM 370 computer, the Electrak records data in EBCDIC form with proper code for the + and - characters at the rate of 800 bits/inch. An alternate TRAK 010 subroutine is included in the IBM computer listing in Appendix D, however, in the later version no attempt was made to eliminate points containing garbled coordinate information, since they could provide a clue to improper digitizing. It is advisable to screen the entire list for alphabetic data. Where this occurs occasionally, the card punched data should be corrected. It is proper to duplicate adjacent data to replace erroneous information.

```
        TTME - ACCELERNTION DATA READ FROA MAG TAPE
5040+19350+09030
5004+19370+07055
4968+19375+07085
49j2+19385+09i10
4896+19400\div09135
+860+19410+0+170
4824+19420+091ij
4758+19420+09080
4752+19425+09060
4716+19430+09030
4580+19440+09070
4644+19450+09105
4608+19455+09165
4572+19455+09220
4536+19460+09285
4500+19470+09335
4464+19470+09295
4428+19480+09260
4.32+19480+09195
4.356+19480+09160
4 320+19480+09125
4284+19490+09070
4248+10500+09110
4212+19510+09025
4176+19523+09070
4140+19525+09125
410'++19530+09175
4068+19535+09215
4032+19540+09245
3996+19545+09280
3960+19550+09215
3924+19560+05160
3888+19560+09095
3852+19560+05050
3816+19560+08995
3780+19560+08970
37%4+19565+08930
3708+19570+08925
3672+17575+08975
3636+i9585+09020
350(0+19590+00060
355%+19590+09110
352R+19595+09145
3492+19605+09170
```

FIGURE 13. SAMPLE OF OUTPUT DATA LISTED BY SUBROUTINE TRAK 010

All coordinate points which are valid are then punched onto cards with a specification of 4 (F10.3,F10.3) format as illustrated in Figure 14 In addition, the data is plotted to the same scale as the original curve on the accelerogram by the PLOTTR Subroutine. Figure 15 shows the Electrak plot of the digitized coordinates for the $N 76^{\circ} \mathrm{W}$ component of the Pacoima Dam record.

An enlarged view of a few seconds of the Electrak record is shown in Figure 16, indicating the location of digitized points in relation to an enlarged background view of the original record. This total record contained 2628 points per 28.6 seconds of record. Figure 17 shows the digitized points recorded by Trifunac (1971) which has 2685 points per 41.7 seconds of record. Essentially in digitizing one needs to use the following guidelines:
A. Try to stay within the centerline of the curve. With a measuring magnifier the curve is enlarged to facilitate the location of the cursor directly along the middle path of the curve.
B. Care should be exercised so that points are located at peaks and valleys at the intersection of the trace centerlines.
C. More points need to be taken along the curved paths then along the straight paths of the accelerogram.
D. Points need to be located at all apparent changes in tangentlines to the center path of the curve.

Figures 18 through 21 show additional segments of the digitized record as further illustrations of the above principles.

9065.000

O\%080 inchan	

*mPACOIMA DAM N74W - OCT 5.1976 HAM ELECTRAC

FIGURE 15. OUTPUT PLOT VIA PLOTTR SUBROUTINE, N76 ${ }^{\circ} \mathrm{W}$ COMPONENT,

$\begin{array}{ll}\text { FIGURE 16. ENLARGED VIEW OF FIRST } 1.3 \text { SECONDS OF N76ㅇ․ } \\ & \text { PACOIMA DAM RECORD SHOWING THE LOCATION OF } \\ & \text { DIGITIZED POINTS FROM ELECTRAK DATA }\end{array}$

FIGURE 17. ENLARGED VIEW OF FIRST 1.3 SECONDS OF PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL TECH DATA (8)

(\%
?

FIGURE 18. ENLARGED VIEW OF 3.3 SECONDS TO 4.8 SECONDS OF N $76^{\circ} \mathrm{W}$ PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL TECH DATA

FIGURE 19. ENLARGED VIEW OF 25.3 SECOND TO 26.6 SECONDS OF $N 76^{\circ} \mathrm{W}$ PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS, CAL TECH DATA

FIGURE 20. ENLARGED VIEW OF FIRST 1.3 SECONDS OF $S 16^{\circ}$ E PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM CAL TECH DATA

FIGURE 21. ENLARGED VIEW OF FIRST 1.3 SECONDS OF S16 ${ }^{\circ}$ E PACOIMA DAM RECORD SHOWING THE LOCATION OF DIGITIZED POINTS FROM ELECTRAK DATA

4. Digitization Corrections for the Electrak Machine

The plotted full-scale digitized accelerogram using the PLOTTR subroutine is shown in Figure 15. For checking it is overlain on the film copy of the original record and examined over a light table. It will be seen that at some points the errors will be easily discernable and are of two types:
(a) points connected by a straight line different from the record indicating that intermediate digitized points were lost by the TRAK 100 machine and; (b) errors in duplicating the record by the operator. Both types of errors need to be corrected by an additional run on the digitizing machine. Prior to redigitizing, the control points should be re-examined to make sure that the location has not changed appreciably. In one run the authors found that fasteners during the servicing of the machine had been left out of the table frame which permitted the plastic table top to move relative to the wires, creating a slight translation and rotation of the record relative to a pre-established axes. For ease in locating matching end points of the correction plot with the original plot, the correction plot should be digitized starting at a readily definable peak or valley and ending at a readily definable peak or valley (Figure 22).

The PLOTTR subroutine plots the record in units of inches for both the X and Y axis. To find the X coordinate in the listing for a particular location on the record, one merely scales the differences in inches between the beginning of the record and the point in question on the plot in the X direction and then multiplies that value by 1000 and adds the initial X listed value. Remember, on the Electrak machine 1000 points equals one inch, in both the X and Y directions.

FIGURE 22. CORRECTIONS TO DIGITIZED DATA, ELECTRAK MACHINE

A Benson-Lehner Reader and Decimal Converter at the Watershed Research Station was also used as a digitizing machine for earthquake records. Essentially, this machine is classified as an "analog-to-digital" reduction device which is used to digitize coordinate values of an accelerogram record. The machine consists of three major components. Figure 23 shows the chart reader (Model E), Figure 24 shows the IBM-26 card punch machine, and Figure 25 shows the decimal converter (Model F). All components are electronically interconnected to facilitate the output of the digitized record in punched card form. The reader electronically "reads" X and Y coordinates along the trace. The decimal converter then interprets the data so that it may be output as a number of counts above and to the right of a specific reference point. This information is then conveyed to the IBM card punch where the X and Y coordinates are automatically punched on cards.
6. Theory of Operation for the Benson-Lehner Machine

The reader, as shown in Figure 26, basically consists of an inclined light table on which the accelerogram is mounted, and two large knobs, (A and B) which control the location of the X and Y coordinates. Essentially these knobs connected to potentiometers, mechanically control the movements of a vertical reference line " D " (VRL) and an inclined calibration line "E" (CL). Knob A contrcls the horizontal position of the VRL from the established zero reference origin in the X direction. Knob B controls the horizontal distance IJ within the range of the plastic overlay. Once the angle of the calibration line E is set, all vertical positions KJ are proportional to the

FIGURE 23. BENSON-LEHNER CHART READER

FIGURE 24. IBM-26 CARD PUNCH MACHINE FOR BENSON-LEHNER READER

FIGURE 25. BENSON-LEHNER DECTMAL CONVERTER

A. Left Control Knob
E. Calibration Line
B. Right Control Knob
C. Scan (Read-Out Button)
D. Vertical Reference Line (VRL)
F. Overlay Clamp
G. Accelerogram Trace
H. Fixed Trace

FIGURE 26. BENSON-LEHNER CHART READER SET-UP POSITION
corresponding horizontal distance IJ. Thus two coordinates, X and Y, are determined from horizontal positions of the VRL and CL. When these two lines are positioned to intersect directly over a point " K " to be digitized, a read-out button "C" is depressed and an electrical impulse is sent to the decimal converter. These impulses are actually a measure of both potentiometer resistances which are related to the relative position from an established origin to the VRL and CL. These input resistances are measured by a ratio bridge which is designed to sense the position of the input potentiometers.

The decimal converter receives these input resistances and converts them to "counts", i.e., a proportional part of the total resistance. The circuit of the converter is designed to scan a series of coded resistors, compare them with the incoming resistance, balance and hold or drop them depending upon whether an overbalance is sensed. When the input resistance is balanced with the internal resistance, a null is reached. If there is an incorrect balance or if there are input changes during this balancing procedure, an error is detected and further processing is halted.

When the input resistance is balanced with the coded decimal resistances, an impulse is conveyed to the IBM card punch. The format of the readout sequence is controlled by a patchboard which is adopted for computer input.

The patchboard contains hubs (Figure 27) into which wires are plugged. There are a total of sixty (60) positions available for readout classified as Mode No. 1 or Mode No. 2 output. These positions are scanned when the record scan button is depressed, thereby allowing the card punch format to be completely controlled by the patchboard setup.

FIGURE 27. BENSON-LEHNER DECIMAL CONVERTER PATCHBOARD

7. Patchboard Wiring of Benson-Lehner Machine

As shown in Figure 27, there are several boxed areas on the patchboard. Certain areas are used for specialized formatting; however, for the purposes of this report it is necessary to use only the following areas: 1) X ANALOG area, 2) Y ANALOG area, 3) MODE 1 READOUT area, 4) MODE 2 READOUT area, 5) DATA SWITCHES area, and 6) the "common" area denoted by open circles. Common hubs merely act to duplicate input characters (e.g., numeric digits, $+,-, ", b l a n k ~ s p a c e s, ~ e t c.) . ~$

When a balance resistance is met, an output impulse is sent to scan the Mode 1 readout (when the mode switch is in the Mode 1 direction). Beginning from the first hub of Mode 1 readout area, the machine scans the hubs and outputs whatever is "patched" into these hubs. Each mode hub represents one column on a computer card. For example, if hub 1 of Mode 1 readout area is patched to Data Switch 3, whatever number data switch 3 is on, that number will be sent to the card punch and will be punched in column 1. If the second hub is patched to a special character, e.g., " + ", a " + " sign will be punched out in the second column of the computer card. The patchboard on the Model F converter has the capacity to output up to 60 characters per scan (data point). Since the authors used the format 2 IlO to define the X and Y coordinate values at each point, only 20 characters were used. That is, the data on the computer card appeared like this: ssssssxxxxsssssstyyy. The s's represent spaces (blanks), followed by four digits representing the X coordinate, followed by six more spaces, a sign for the Y coordinate, followed by three digits representing the Y coordinate. The authors found it convenient to utilize the MODE 1 READOUT for the X coordinate and the MODE 2 READOUT for the Y coordinate as further explained.

To wire the patchboard for the 2110 format, the following steps are used:

1. *Wire the space hub (SP) to the common hub as shown in Figure 27, so that the twelve vacant hubs are made available for the twelve spaces of the output.
2. Wire the first six hubs of MODE 1 to six of these common spaces mentioned in Step 1.
3. Wire hub 7 of MODE 1 to data switch 1 . This will output the digit selected by data switch 1 in the seventh column of the punched card.
4. Wire hubs 8,9 , and 10 of MODE 1 to hubs 3,2 , and 1 respectively of the X ANALOG area. This will output the last 3 digits of the X coordinate value on the 8 th, 9 th, and 10 th column of the punched card.
5. Wire hubs 11,12 , and 13 of MODE 1 to three more common space hubs. This puts three spaces on the punched card in columns 11, 12, and 13.
6. Wire hub 14 to the left reset hub located just below the MODE 1 area. This switches control to the MODE 2 READOUT area and the readout SCANNER will continue to scan from the first hub of MODE 2, without changing the position of the mode switch on the face of the converter.

[^6]7. Wire the first two hubs of MODE 2 to two remaining common space hubs. This places two more spaces (blanks) in columns 14 and 15.
8. Wire hub 3 of MODE 2 to the "sign" hub of the Y ANALOG area. This places the proper sign in the 16th column of the punched card.
9. Wire hub 4 to data switch 2 .
10. Wire hubs 5, 6, and 7 of MODE 2 to hubs 3, 2, and 1 respectively of the Y ANALOG area. This will output the last three digits of the Y coordinate value on the 18 th , 19 th , and 20 th columns of the punched card.
11. Wire hub 8 of MODE 2 to the right reset hub. This switches control from MODE 2 back to MODE 1. Further scanning stops at this point until the scan (readout) button is pressed again.

When the scan button is pressed, and the mode switch is in the MODE 1 position, the readout scanner will begin to scan the MODE 1 READOUT hubs and will output whatever digit is patched into that hub. This cycle is repeated each time the scan button is pressed.

Although other wiring systems can be used to obtain the same type of output format, the authors found this system very satisfactory and did not pursue any others.

The data switch is used to output the thousands digit of the X coordinate. Since the Model F converter has a positive range of from 0 to +999 , the data switch* is used to increase this range up to 9999. To accomplish this, the data switch is initially set to zero. When the X coordinate (VRL) reaches +999, the data switch is set to " 1 " and the X channel of the converter is nulled. This is done by pressing the clear button, and then turning the X channel origin dial until both "null"

[^7]Nixie tube lights are out. Pressing the scan button will now output 1000 for the X coordinate value. The "1" (first digit) is from the data switch and the three zero's represent a new origin of the X axis. This process is repeated each time the X coordinate values reach 999; the data switch advancing to $2,3,4$, etc., as required by the length of the accelerogram.

This process is not necessary for the Y coordinate since with the minus sign, the range is from -999 to +999 . This allows 1998 counts or about 8 centimeters from the lowest to the highest point on the accelerogram. This is usually adequate for most earthquake records. A data switch can be used, however, as in the X coordinate, if this range is exceeded.

8. Mounting the Accelerogram Record on the Benson-Lehner Machine*

Mounting the accelerogram onto the inclined light table of the record reader is the first step in obtaining digitized data from an accelerogram record. Using Figure 26 as a guide, the procedure is as follows:

1. Turn on the light behind the light table.
2. Position the VRL as far to the left as possible with the left control knob (A).
3. Place the accelerogram record between the light table and the VRL. The leftmost starting point on the accelerogram (time $=0$) should be approximately $1 / 4^{\prime \prime}$ to the right of the VRL and approximately centered between the top and bottom of the

[^8]light table. Temporarily hold the accelerogram in this location by placing the magnetic bars over the left and right edges.
4. Place the calibration line wand (E) in the overlay clamp (F) initially at a 45° angle.
5. Turn the right control knob (B) clockwise as far as possible. The intersection of the VRL (D) and the calibration line (E) should now be at least $1 / 4^{\prime \prime}$ below the lowest point on the accelerogram record (G) or fixed trace (H).
6. Turn the right control knob (B) counter-clockwise as far as possible. The intersection of the VRL (D) and the CL (E) should now be at least $1 / 4^{\prime \prime}$ above the highest point on the accelerogram (G). If not, adjust the angle of the CL wand (E) so that this requirement is met. Return to Step 5 and recheck the lowest point again with the new wand angle. (The overlay clamp can also be moved up or down to assist in achieving Steps 5 and 6.)
7. Turn the right control knob (B) so that the intersection location of the VRL (D) and the CL (E) is over the leftmost portion of the fixed trace (H).
8. Turn the left control knob (A) clockwise slowly and check to see that the intersection location follows the fixed trace. If the fixed trace veers away from the intersection location, tilt the accelerogram so that the intersection location follows exactly along the fixed trace. Return to Step 5 and check again to see that all the following steps (Steps 6 through 8) are carried out.
9. Using masking tape, tape the accelerogram directly to the light table so that its position cannot be altered. The accelerogram is now ready for digitization and should not be removed or repositioned until a satisfactory record ${ }^{*}$ of digitized points is obtained on punched cards for the component of the accelerogram in question including the fixed trace.
9. Digitization Operation on the Benson-Lehner Machine

To operate the Benson-Lehner machine and effectively digitize coordinate data from an accelerogram, the following procedure is used:

1. Turn on the power to all three components, i.e., the light behind the reader, the decimal converter, and the card punch machine.
2. Turn the output control switch of the decimal converter to "SETUP" position to check for proper accelerogram mounting and alignment.
3. Turn both scaling knobs of the X and Y channels to the maximum capability of the machine (250 counts per cm on the Model F).
4. Press the X channel Nixie light tube (light on) to scan the X coordinate values. Turn the left control knob (A) of the reader so that the VRL (D) is as far left as possible. The location of the first point in the accelerogram should be about $1 / 4^{\prime \prime}$ right of the VRL.
5. Press the clear button and adjust the origin dial of the X channel so that the null Nixie lights are

[^9]off. This sets the X origin at the intersection location, thus making all subsequent values of X positive.
6. Press the Y channel Nixie light tube (light on) to scan the Y coordinate values. Turn the right control knob (B) so that the intersection location is at the lowest point on the accelerogram trace (G).
7. Press clear button and "Force in" the digits -999 on the light bank by pressing these lights. (Lights will go on.) Now adust the origin dial of the Y channel so that the null lights are both out. This places the zero value of Y 999 counts above the intersection location thus leaving another 999 counts above the zero value of Y. Press scan to see if -999 reproduces itself.
8. Obtain the scaling factors which convert decimal converter "counts" to units of gravity and seconds. To do this, measure the vertical distance (in centimeters) between the lowest and highest point on the accelerogram, (ΔD). When the VRL and the CL intersect over each of these points, press the readout button (C) and record their respective values that appear on the Nixie light tubes. The difference between these two distances is denoted ΔV. Thus the vertical scale is $\frac{\Delta V}{\Delta D}$ counts per cm . The horizontal scale is found in the same manner using the initial time (X coordinate) value and the +999 time value as differencing points. (This information is used later to convert counts to
units of gravity and seconds and also in the PLOTTR subroutine to reproduce a full-scale plot of the accelerogram.)
9. Press the X channel Nixie light switch and check to see that the mode switch is in the MODE 1 position.
10. Turn the output control switch to "PUNCH".
11. Depressing the readout button (C) will now read the coordinate data of the intersection location of the VRL (D) and the CL (E).

This information is converted to a digital record of the X and Y coordinates and punched on computer cards.

Digitizing from here on is a simple, but tedious, operation. However, the care taken with this procedure is directly related to the quality of the final result. To achieve this objective, the operator should follow these few quidelines:

1. Move the left control knob (X coordinate) clockwise as little as possible between successive points. This allows for the maximum number of data points to be digitized.
2. Keep the intersection location as near as possible to the center of the trace, making certain to digitize locations at all peaks and valleys and all changes in straight-line patterns.
3. The eyes of the operator should always be normal to the light table and over each digitized point. One operator should digitize a complete record.

Deviation from this guideline will yield localized errors which are difficult to find and correct.*
4. Allow the converter to complete its conversion operation before moving on to another point.

These procedures and guidelines should yield data that is as reliable as possible to achieve with the Benson-Lehner digitizing machine.
10. Digitization Corrections - Benson-Lehner

After the accelerogram and fixed traces are digitized, the punched cards contain the data for use in the PHASE1 program. One of the features of this program, through the use of the PLOTTR subroutine, is to plot a full-scale reproduction of the digitized data. These plots are used to locate and correct any accidental errors in digitizing. This can be accomplished by the following procedure.

Place the full-scale plot of the digitized accelerogram over the original accelerogram record which should still be mounted on the record reader. If these traces deviate appreciably, corrections must be made. In general, this procedure serves to relate to the user the relative quality of digitization. Tolerable deviations are left to the judgement of the user. Gross errors such as peaks and valleys that are omitted appear as a straight-line connection between adjacent points.

If a correction is desired, only the portion of the accelerogram which is in error need be redigitized. This is accomplished by following the steps in the Digitization Operation section with a few exceptions. In steps 3, 4, and

[^10]5 the null dial must be adjusted so that the initial X value and the maximum and minimum values of Y agree with those in the initial mounting procedure. In addition to the portion of the accelerogram that is to be corrected, the minimum and maximum values of the X and Y coordinates must be digitized (an additional four points). This is necessary to obtain a plot of the corrected data to the proper scale.

When the redigitized data is plotted, the corrected portion is placed over the original accelerogram and the first plot. If the two plots now appear to be a satisfactory duplicate of the original accelerogram, the incorrect data points (punched cards) are simply replaced by the new correct data. Recall that the PLOTTR subroutine plots the record in units of inches for both the X and Y axis. To find the X coordinate in the listing for a particular record, one merely scales the differences in inches between the beginning of the record and the point in question - the plot in the X direction - and then multiplies that value by the X scaling factor in counts/inch and adds the initial X listed value. A plot of the new data deck will now yield a corrected accelerogram. This full-scale plot assures the user that the data that will be used in the PHASE2 program (see Section V) is a correct representation of the accelerogram record.

11. Comparison of Electrak and Benson-Lehner Digitizers

In the previous portion of this section, two methods of digitizing an accelerogram have been presented. There are distinct advantages and disadvantages to each method. Overall, digitization with the Electrak seems to offer the best results as far as obtaining an accurate representation of the accelerogram. However, certain factors such as cost and availability of equipment can necessitate the use of the Benson-Lehner machine.

The Electrak machine has a distinct advantage over the Benson-Lehner in resolution, i.e. number of counts per linear measurement of accelerogram. The Electrak can record 1000 counts per inch as compared to the 800 counts per inch (maximum) returned by the Cal. Tech. Benson-Lehner machine. This advantage leads to a more accurate digital representation of the accelerogram.

Another primary advantage the Electrak possesses over the Benson-Lehner is in the speed of recording. It was established that the time necessary to set up and record 28 inches of accelerogram trace (including a fixed trace) on the Electrak is about four hours, while the Benson-Lehner required seven hours for 22 inches of record (including fixed trace). The primary reason for this is that each coordinate of the trace must be read, converted and punched on cards (on the Benson-Lehner) before the user can proceed to the next point. This operation takes about four seconds for each digitized point. On the Electrak machine, this is done almost instant1y. (In fact, the Electrak can record continuous points at the rate of about five points per second: however, it is not physically possible to move the cursor over the accelerogram trace that fast and retain the degree of accuracy necessary for integration.)

A third advantage the Electrak maintains is in the recordable size of the accelerogram. The Electrak recording table has the capacity of recording accelerograms up to 48 inches long while the Benson-Lehner is limited to accelerogram lengths of about 22 inches.

The Electrak machine has an initial cost of around $\$ 20,000$ (depending on the size of the table and peripheral equipment) while the Benson-Lehner original cost was about
half this amount. (If, of course, both machines are available to the user, original cost would not offer any advantage.)

The Benson-Lehner, although a more "primitive" analog-to-digital reduction device, offers the advantage of assurance that each coordinate point is recorded, regardless of the accuracy. Although the Electrak offers many distinct advantages over the Benson-Lehner, the user can never be absolutely certain that the recorded information is retrievable in a usable form. It was found that 95% of all digitized data was retrievable from the Electrak machine. However, in a very few cases, (due to operator error or machine error) complete records were lost and irretrievable. In some cases (due to machine error), characters containing digitized coordinates were lost, thus eliminating the coordinate point. These record loses are not realized until after the digitizing process is complete and a full-scale plot is prepared.

With the Benson-Lehner digitizing machine, however, the operator knows immediately if a certain coordinate point is not recorded. Each point is immediately punched on a computer card, the operator hears the punching process and has physical evidence (the cards) that the recording process is taking place. With the Electrak machine, the data is sent to a magnetic tape (a relatively silent process) and the quality of the information cannot be periodically inspected.

The frequency of other types of human errors appear to be equal for both digitizing methods. It should be emphasized that the reliability of the Electrak method is usually very high and is discussed above only to inform the user of the remote possibilities of record loses. Overall, the Electrak machine possesses the greatest advantage of the
digitizing process and is recommended for the digitization of accelerograms.

12. Baseline Corrected Data - Electrak versus Benson-Lehner

The resulting digitized baseline corrected accelerograms*are shown in Figures 28 and 29. Figure 28 is a plot of the baseline corrected accelerogram digitized on the Electrak machine and Figure 29 is a plot of the same baseline corrected accelerogram digitized on the Benson-Lehner machine. (Note, since the data has not been scaled (to be done in Phase2), the values representing time and acceleration are relative values only.)

At first glance, both plots appear to be quite similar. However, a closer inspection will reveal slight differences. The major difference lies in the overall number of points that were digitized. The Electrak machine recorded a greater number of points than the Benson-Lehner machine. This higher frequency of data points produces a more staggered line between adjacent peaks and valleys.

The two digitized and plotted records do, however, represent the original accelerogram in digital form. The data used to plot these graphs is now ready for further processing.

13. Perkin-Elmer Microdensitometer

Figure 30 shows the model 1010A Microdensitometer unit of the Perkin-Elmer Photometric Data Systems' Microdensitometer System, ${ }^{\star *}$ at the Optical Sciences Laboratories of the University of Arizona. Because the system was not fully

[^11]

FIGURE 30 MODEL 1010A PERKIN-ELMER MICRODENSITOMETER

FIGURE 31 OPTICS OF PERKIN-ELMER MICRODENSITOMETER
operational at the time this research was prepared, the authors used an operational system at the Kitt Peak National Observatory for a 20 -minute scan, which was all the time allowed under a crowded operation schedule at Kitt Peak. However, this was enough to establish the possibility of the system for accelerogram digitizing purposes and the problems that occur for this use.

The microdensitometer system is designed to take accurate readings of very small areas of a photographic plate or film at precise locations. Plates or film can be measured in terms of either density or transmission over a dynamic range in density of 0.0 to 5.115 . Signals describing the measured density or transmission values are produced from a photomultiplier tube and amplifier, fed to an analog-to-digital converter and then, as digitized information, routed to the core memory of the controlling computer system. The end product is either output onto a magnetic tape, a strip chart recording, or a teletype page.

A Digital Coordinate Readout System (not shown) monitors and displays the X and Y stage positions in microns,* provides signal interrupts to the computer when scan limits are reached and also at setable intervals for density measurement. The model 1010A microdensitometer unit consists essentially of three systems: one to measure density or transmission information, one to show the storage in either or both X and Y directions, and one to generate precise storage position information.

Density measurement, Figure 31, is accomplished by passing a beam of light through the illuminating, lower,

[^12]optical system, through the sample being tested, and on to the analyzing, upper, optical system which is symetrical to the first, then on to the photomultiplier tube. The illuminating optical path contains eight preslit apertures selected to suit a matching set of eight scanning apertures in the upper optical path. Four of the apertures are square and four are rectangular. The availability of two objective magnifications (X10 and X4) and four secondary magnifications provide a wide variety of apertures to choose from.

With only one run available, the authors decided to use a 40×40 micron slit size. This allowed a grid of 635 counts per inch in either the X or Y,directions.

The photomultiplier converts the light intensity into a voltage signal, which is amplified by a logarithmic converter into density output values, i.e. from 0.0 to 0.115 .

Each stage axis is driven independently by a precision DC servo motor/tachometer system ensuring uniformity of stage motion. The stage accommodates films or plates up to $10^{\prime \prime} \times 10^{\prime \prime}$. For that reason a film negative with a maximum dimension of $9^{\prime \prime}$ along the record was prepared from the original contact opaqued negative. Also the middle (Down) acceleration portion was completely eliminated by opaqueing on the reduced negative. However the middle fixed trace was retained, while the fixed trace for the $N 76^{\circ} \mathrm{W}$ and $\mathrm{S} 16^{\circ} \mathrm{E}$ components were eliminated. The software computer program did not allow differencing between the fixed trace and acceleration curve for the same component. The film was placed on the platen of the microdensitometer (Figure 31), and overlain with a clear glass plate to keep it flat.

14. Scan Parameters

A scan or scan line is defined as a single sweep (traverse) across the plate, the length of the sweep and the
distance between data points being specified by the user. When magnetic tape is used, this scan line will be written as one or more magnetic tape records, depending on the number of data points in the scan line. A scan pattern consists of a series of one or more parallel scan lines, with a specified distance between each scan line.

When magnetic tape is used, one complete scan pattern is written as one file on the magnetic tape. Therefore, the scan pattern covers a rectangle whose width is the length of one scan line and whose length is defined by the number of scan lines in the pattern and the distance between scan lines. The corresponding magnetic tape file will consist of NS (no. of scan lines). by NR (no. of points per scan) followed by an end of file. Two end of files signify end of information. During the 20 minute scan NS was equal to 1168 , and NR was equal to 2850 ; thus about $1 / 4$ of the total accelerogram was recorded. The data was placed on the tape in a raster scan pattern. A raster scan pattern is one where consecutive scans are done in opposite directions, while an edge scan pattern is one in which scanning is only done in one direction, with no data being taken on the return movement of the platen.
15. Reduction of Data - Microdensitometer

A software package OPSCAN * was used to retrieve the data from the tape in usable form. Essentially OPSCAN first unpacks the Identification Record at the beginning of each file, such as NS, NR, origin position etc. Then it unpacks each scan line. On the raster scan it returns the data in reversed order. As each scan is read the program searches the density values to be below a fixed limit (clear film),

[^13]counts the number of points in an array of points while crossing a clear Y width of film, and chooses the midpoint of that array to be output as a Y coordinate. The values of the X and Y coordinates are given as a position number of the midpoint in the scan pattern, or are relative representations of time (X) and acceleration (Y).

Figure 32 shows the data obtained for the first 200 scan lines, which cost approximately $\$ 5$ to run on the CDC 6400 computer. For an $8^{\prime \prime}$ length of record the computer cost alone would have been approximately $\$ 127$, not a small amount even though three components of acceleration can be digitized this way at one time by first creating a negative with three components and one fixed trace. At 635 counts/inch in both the X and Y directions there would have been 2850 x 635 x 8 $=14,478,000$ data points to be examined in the full test record. Furthermore commercial rates for the required 4 hour scan on the microdensitometer (quoted at $\$ 60 /$ hour by one microdensitometer installation in California) would add another \$240 to the bill. This method is therefore quite expensive per run even when one has free access to the microdensitometer.

Figures 33 and 34 show the plots of Figure 32 onto Figures 16 and 20 respectively. Photographic problems on the accelerograph record prevent an accurate digitization representative of the acceleration curve. The automatic scanning system can select the midpoint of an array of points in its line of trace, but cannot discern where traces overlap. One way of overcoming this problem would be to make a negative of the original negative copy (that is acceleration curves would be black on clear film), and then cut separations between adjoining peaks and valleys using a film cutter, as indicated in Figure 35 but the separations are difficult to place accurately even with the aid of a magnifying glass. In view of the above limitations the microdensitometer method is not recommended for general accelerogram digitizing, but can be used where

PACOIMA SCANI				Down Fixed Trace			
				$\mathrm{N} 74^{\circ} \mathrm{W}$			$\mathrm{S} 16^{\circ} \mathrm{E}$
					\dagger	γ	1
1	680	1597	2056	51	680	1590	2060
2	680	1597	2056	52	690	1590	2065
3	681	1596	2057	53	698	1590	2030
4	681	1597	2057	54	692	1589	2060
5	680	1597	2057	55	670	1588	2053
6	680	1597	2057	56	642	1588	2036
7	680	1597	2057	57	630	1588	2057
8	680	1598	2057	58	638	1588	2057
9	680	1597	2057	59	663	1588	2027
10	680	1597	2057	60	686	1588	2048
11	680	1597	2056	61	688	1590	2023
12	680	1598	2057	62	693	1590	2023
13	680	1598	2057	63	695	1590	2047
14	680	1598	20.57	64	689	1590	2012
15	680	1598	2057	65	666	1590	2012
16	680	1599	2057	66	643	1588	2058
17	680	1598	2057	67	644	1589	2046
18	680	1599	2056	68	662	1590	2060
19	U80	1600	2056	69	670	1590	2060
20	681	1600	2056	70	722	1590	2084
21	680	1600	2056	71	723	1588	2083
22	680	1600	2057	72	707	1588	2072
23	680	1600	2056	73	685	1588	2072
24	680	1599	2056	74	666	1588	2053
25	680	1598	2057	75	659	1589	2054
26	680	1598	2057	76	663	1589	2060
2.7	680	1593	2057	77	671	1589	2045
28	680	1599	2057	78	676	1588	2065
29	680	1598	205.7	79	677	1588	2060
30	680	1598	2057	80	652	1.588	2060
31	630	1598	2.057	81	649	1588	2068
32	680	1598	2056	82	634	1588	2078
33	630	1598	2057	83	639	1588	20.3
34	680	1596	2057	84	6f8	1588	2092
35	6S0	1597	2057	85	701	1588	1997
36	6́30	1597	2056	86	731	1588	2039
37	680	1597	2056	87	741	1588	2011
38	680	1597	2056	88	699	1588	2011
39	680	1597	2056	89	652	1588	2017
40	680	1597	2056	90	641	1588	2104
41	680	1577	2056	91	627	1588	2130
42	680	1597	2056	92	633	1588	2129
43	752	1585	2039	93	652	-. 588	2109
44	699	1588	2040	94	684	1585	209á
45	693	1588	2055	95	713	1588	2072
46	686	1589	2.066	96	718	1588	2052
47	681	1583	2070	97	703	1588	2030
48	677	1589	$\therefore 268$	98	678	1588	2026
49	673	1590	2060	99	658	1588	2014
50	670	1590	2049	100	640	1588	2017

FIGURE 32 RELATIVE TIME-ACCELERATION COORDINATES $X-Y$ FOR THE FIRST 200 LINES OF SCAN, MICRODENSITOMETER METHOD, PACOIMA DAM RECORD

101	628	1588	2031
102	629	1585	2059
103	635	1588	2072
104	648	1588	2059
105	685	1588	2089
106	725	1588	2089
107	762	1588	2089
108	778	1588	2067
109	759	1588	2064
110	703	1588	2064
111	633	1588	2057
112	583	1588	2057
113	576	1588	2051
114	593	1588	2054
115	622	1588	2063
116	644	1588	2063
117	679	1588	2063
118	711	1588	2056
119	750	1588	2077
120	769	1588	2036
121	767	1587	2007
122	698	1587	2007
123	644	1587	2007
124	606	1587	2007
125	611	1588	2070
126	601	1588	2068
127	602	1588	2068
128	610	1588	2068
129	646	1588	2066
130	661	1588	2066
131	708	1588	2066
132	734	1588	2030
133	795	1588	2032
134	720	1588	1999
135	663	1588	1929
136	657	1588	2012
137	638	1588	2028
138	619	1588	2056
139	606	1588	2066
140	604	1588	2066
141	620	1585	2066
142	619	1585	2066
143	693	1555	2065
144	762	1588	2089
145	782	1588	2078
146	781	1588	2068
147	762	1588	2074
148	708	1588	2074
149	608	1588	2074
150	541	1588	2074
15			
1595			

151	546	1588	2074
152	554	1588	2074
153	582	1588	2074
154	668	1588	2074
155	760	1588	2024
156	791	1588	2016
157	793	1588	2022
158	790	1589	2040
159	712	1589	2040
160	647	1589	2040
161	628	1589	2040
162	595	1589	2040
163	586	1588	2096
164	600	1587	2081
165	600	1587	2081
166	650	1588	2057
167	655	1589	2051
168	656	1588	2055
169	661	1588	2036
170	668	1588	2077
171	676	1588	2077
172	692	1588	2079
173	713	1588	2079
174	720	1588	2071
175	710	1589	2069
176	681	1539	2069
177	654	1589	2091
178	641	1589	2105
179	643	1588	2099
180	655	1588	2087
181	677	1588	2070
182	700	1589	2062
183	725	1589	2064
184	740	1589	2069
185	743	1585	2070
186	734	1589	2069
187	707	1538	2069
188	671	1538	2077
189	640	1588	2081
190	625	1588	2090
191	623	1588	2052
192	628	1588	2065
193	631	1587	2059
194	631	1588	2040
195	634	1588	2030
196	641	1588	2026
197	656	1558	2027
198	681	1588	2052
199	718	1588	2095
200	739	1588	2076

Figure 32 Cont.

$\begin{array}{ll}\text { FIGURE } 33 & \text { PLOT OF MICRODENSITOMETER DATA FOR } 1.3 \text { SECONDS } \\ & \text { OF RECORD, N74 }{ }^{\circ} \mathrm{W} \text { COMPONENT, PACOIMA DAM }\end{array}$

$\begin{array}{ll}\text { FIGURE } 34 & \text { PLOT OF MICRODENSITOMETER DATA FOR } 1.3 \text { SECONDS } \\ & \text { OF RECORD, S16 }{ }^{\circ} \text { E COMPONENT, PACOIMA DAM }\end{array}$

$\begin{array}{ll}\text { FIGURE } 35 & \text { IMPROVED S } 16^{\circ} \text { E COMPONENT, PACOIMA DAM } \\ & \text { RECORD, OBTAINED BY CUTTING FILM EMULSION } \\ & \text { BETWEEN ADJACENT PEAKS AND VALLEYS OF CURVES }\end{array}$
the peaks and valleys are far enough apart so that the automatic optical scanning system can produce a series of digitized points representative of the path of the original curve. For interested researchers wishing to examine this method further, the OPSCAN program that produced Figure 32, using the CDC 6400 computer, is listed in Appendix F.

16. Digitization with the Microfische Film Reader

Hand digitizing using a microfische film reader was first considered as an expedient measure when no commercial digitizer was available; however, the excellent results obtained might make this method highly desirable. The method takes more time than commercial digitizers, but results in less eyestrain, since no magnifiers are required. Also the problem of parallax, difficult to control on the Benson-Lehner machine, is eliminated.

One of the problems in any projection system is to establish linearity to scale for the projection. The problem was solved by projecting a linear grid together with the film record. The resolution can better that of the Electrak machine.

Figure 36 is a schematic of the setup for the microfische film reader. The front view screen is removed. A positive print of the original negative reduced to $8^{\prime \prime}$ maximum length (black on clear film) is placed in contact with 133 lines/inch halftone printing film. Halftone printing film is consistent in equal grid spacing, and serves as a background reference grid for establishing coordinate locations on the accelerogram. The printing film and positive accelerogram are then placed on the platen of the microfische film reader and projected onto a wall, on which a $36^{\prime \prime} \mathrm{x} 36^{\prime \prime}$ paper grid with $1^{\prime \prime}$ c.c. heavy lines in both directions is already located. By suitable movement and focusing of the microfische film reader the enlargement of the printing screen can be arranged so that the center of the screen circles coincide as nearly as possible to all the 1 " square grid crossings on the paper.

In this way a linear projection of the accelerograph is focused on the wall at a greatly enlarged scale (the authors used a 24X enlargement lens). Figure 37 shows the resulting projection for the first 1.3 seconds of $N 76^{\circ} \mathrm{W}$ Pacoima Dam record. An origin is established on the paper record and the digitized points are recorded. Since the platen will have to be moved several times to obtain the full record, different colored felt tip pens can be used for different sections of the record, projected onto the same grid paper. Afterwards the coordinate locations are merely read off of the paper grid and handpunched onto cards. Figure 37 also shows an excellent plot of the scaled data. Some idea of the accuracy involved can be stated as follows:

The original full record was 28 seconds at 17 inches long. One inch on the Electrak machine $\frac{28}{17}=1.647$ seconds of record is identified with 1000 machine counts. The reduced record on the microfische is 8 inches long and has 133 lines of printing screen per inch or 16.625 screen lines/inch of original ręcord. But, the record is projected so that a $1^{\prime \prime}$ square on the film becomes a $16.625^{\prime \prime} \mathrm{x} 16.625^{\prime \prime}$ square on the wall. The paper grid on the wall is finely divided to 0.1 intervals and can be easily interpolated by eye to 0.01 intervals. Therefore, a microfische count of 1662.5/inch of original record is possible.

III. PHASEI SUBROUTINE - DIGITIZATION

1. Introduction

The PHASEl subroutine is a preliminary computer program that processes raw digitized accelerogram data into a form that can be utilized by a second phase program (PHASE2 - Appendix D for filtering and integration. PHASE1 reads data that has been digitized from an Electrak 100 (on a 7 or 9 -track magnetic tape) or a Benson-Lehner digitizing machine (on IBM key-punched computer cards). The program is written in FORTRAN IV and is designed for use on the CDC 6400 computer or IBM 360/370 O.S. computer. It has a capacity of 3000 digitized accelerogram points per component or about 30 seconds of an earthquake record.

PHASE1 is used as a "first step" data handling program to make necessary corrections prior to subsequent integration and can be used to punch corrected data on IBM computer cards. Any number of digitized components can be processed by PHASEI as long as CP time is available (See User's instruction for details.)

2. Purpose

The quality of digitized accelerogram data depends highly on the expertise and skill of the operator. Since this human function is susceptible to error, a method of correcting these errors, before further processing, is of utmost importance. The primary purpose of PHASE1 is to locate accidental errors so that the user can make the necessary corrections before proceeding to subsequent filtering and integration of the accelerogram data.

In addition to human error, machine error can also nullify the quality of a good digitized record.

For either case, any integration and filtering scheme is only as good as the input data. The quality of the final result is directly related to the quality of the input data.
3. Features

PHASE1 produces a plot of the digitized data, through the use of subroutine PLOTTR. This is especially useful when the plot is reproduced to the exact dimensions of the original accelerogram trace. By placing the full-scale plot over the original accelerogram, deviations between the two are quite obvious if an error in the input data exists. This plot is a representation of the data that will be subsequently filtered and integrated; therefore, any errors must be corrected before further processing. (The actual correction procedure depends on the machine from which the data was originally digitized and is explained in detail in the corresponding digitizing section of this report.)

After these corrections (if necessary) are made, another full-scale plot may be made using the corrected data. If the new plot agrees with the original accelerogram, the user can now be assured that his data is correct and should yield good results when filtered and integrated.

Another basic feature of PHASE1 is to convert data recorded on a 7 or 9 -track magnetic tape (by the Electrak machine) to punched cards. This is necessary before going on to the PHASE2 program. The Electrak machine recording errors are also corrected by PHASE1 (details of this portion are given in the TRAK 010 subroutine section in Appendix E.

As a final option of PHASE1 the data may be scaled and the baseline corrected. This feature yields acceleration values that are relative to a horizontal straight line which represents the average acceleration of the entire earthquake record. All acceleration values are thus given as being either positive or negative if they are greater or less than this average acceleration. Also the initial time value is changed to zero and all subsequent values of time increase accordingly. In effect, this feature of PHASE1 places the X origin at the first digitized point with the accelerogran trace oscillating about an average acceleration value (i.e., the X axis).

The options available to the user are sufficient to accomplish the necessary requirements before proceeding to further data processing. It should be noted, however, that if corrections are to be made before processing data in PHASE2, baseline corrected data cannot be used since the time and acceleration output values are not the same as the input data. Baseline corrected data should only be obtained after the user is assured that the data has been correctly digitized or that all necessary corrections have been made. When this requirement is satisfactorly fulfilled, the baseline correction option is exercised and the new data is ready for further processing in the PHASE2 subroutine.

4. How the PHASEI Subroutine Works

PHASEl consists of eight major steps which are as follows:
A. Pass 1 -- Plotting the digitized data to the scale of the original accelerogram.

1. Read and write the title and main control information.
2. Read in the raw digitized data, count the number of data points and write. Call subroutine PLOTTR to plot the data
and go to step 7.
3. Punch the data.
B. Pass 2 -- Prepare baseline corrected data after all corrections have been made to the raw data.
4. Read and write the title and main control information.
5. Read in the corrected raw data, count the number of data points, and write.
6. Check the time values for continuously increasing times.
7. Read and write the fixed trace data (if any) and deduct from the acceleration values.
8. Adjust the data for initial time equal to zero and a new zero baseline.
9. Plot the baseline corrected data.
10. Punch the baseline corrected data for use in PHASE2.
11. Return to step one and repeat the process if other raw corrected data is available.

Step 1
This step consists of reading and writing the title and the main control information input on the first four cards of the data. The main control information (second and fourth cards) direct the program to yield the desired output (i.e., a plot of raw or baseline corrected data and a punched deck of raw or baseline corrected data).

Step 2
The second step reads the raw digitized time-acceleration data from magnetic tape or raw or corrected digitized time-acceleration data from punched cards depending upon the value of "INPUTP" given in the fourth control card.* If the data is to be read from a magnetic tape, the data is first corrected and placed in a format ($4 \mathrm{x}, 2 \mathrm{~F} 6.0$), usable by the * See listing in Appendix D, page D-3.
computer. If the data is to be read from punched cards, the data is read in format (2 F 10.0) and consecutively placed in the TIME and ACCEL arrays. The number of data points are counted, checked to see that they don't exceed the size of the arrays, and then written on the output file.

Step 3
This step is included merely as a means of assuring that the data is continuously increasing with time. Since some digitizing machines are extremely sensitive, the possibility exists where a subsequent data point may be digitized with a time value less than the previous point. This possibility does not actually represent the intent and, therefore, should be eliminated. If a subsequent time value does happen to be smaller than the previous time value, the subsequent value is equated to the previous (greater) value.
Step 4
In this step, fixed trace values (if any are included), are read into memory, smoothed, and deducted from the acceleration values. This process eliminates errors that are caused by improper accelerogram alignment on the digitizer or on the accelerograph itself. The smoothing process simply applies a weighted mean $(1 / 4,1 / 2,1 / 4)$ to each Y coordinate of the fixed trace and the two adjacent Y coordinates. The deduction process requires interpolating the smoothed Y coordinates to time values that coincide with each acceleration value and then deducting the corresponding fixed trace value from the acceleration value. For the above smoothing process it is recommended that fixed trace digitized points be equally spaced in time, say at intervals of the order of one-half second.
Step 5
This portion scales the time and acceleration values, subtracts the initial time from all subsequent time values and changes the acceleration values relative to an average acceleration. The time and acceleration values are scaled according
to the factors SCALET and SCALEA respectively. The acceleration trace is then integrated to obtain the "area" (under the trace). This area is divided by the total time of the record to yield an average acceleration value. The new baseline corrected acceleration is then the difference between the old acceleration and the new average acceleration value. Physically this sets the change in ground velocity from beginning to end of record to zero. When no fixed trace is available, the baseline is not only first translated to make the mean zero as above, but then a very small rotation is introduced to make the sum of the squares of the deviations from the zero line a minimum.

Step 6
The time-acceleration data is plotted in this portion of PHASE1. For pass 1 the call to subroutine PLOTTR provides the means of plotting the data to the exact size of the original accelerogram. No labeled coordinate axes are provided. The location of coordinate input data is described in the section on digitizing. For pass 2 it is necessary to first obtain the maximum and minimum values of the corrected data, and utilizing these values for the desired dimensions of the plot, the scaling factors are obtained. These scaling factors convert time-acceleration values to dimensions compatible for the plotter, and labeled relative coordinate axes are provided. In addition, the title of the data is printed on the output plot for both passes.
Step 7
The desired time-acceleration data is punched on computer cards in the format 4 (2F10.3). The " 4 " yields four data points per card, each data point consisting of two quantities, i.e., the time and acceleration values.
Step 8
In this step control is directed to the beginning of the program where more data is read. If a title card is read,
the program expects to process another accelerogram component. If an end-of-file card is read the program terminates.

A flow chart of the PHASEl subroutine is shown in Figure 38. Figures 28 and 29° show baseline corrected plots from Electrak and Benson-Lehner data respectively.

FIGURE 38 FLOWCHART OF PHASE1 SUBROUTINE

IV. INTEGRATION

1. Introduction

After the analog data has been digitized and corrected for accidental digitizing errors, it must be integrated to be of use in a design problem. The approach used by Cal. Tech. is basically a step by step process of integrating, leastsquaring, filtering, and instrument correction. Integration of acceleration is necessary to obtain velocity and displacement. Filtering of the data is required to remove random and systematic errors that result from digitization and integration.

In this section, we shall discuss sources of errors, methods of integration, filtering, leastsquaring, and instrument correction, and how the Cal. Tech. program uses these methods to try to reduce the effects of errors.

2. Sources of Errors

One problem with obtaining actual true ground displacement from an earthquake accelerogram is the presence of extremely low and high frequency digitized errors. It has been found that these errors are sometimes random and sometimes systematic and are due to the nature of the recording and digitizing methods. ${ }^{(11)}$ These errors contain long and short period components which do not actually exist in the original accelerogram and therefore must be eliminated.

Some of the causes of long period errors are: transverse play of the recording paper, warping of records, enlargement of records, imperfections in the digitizing machine, and imperfections in the recording instrument itself.

Short period (high frequency) errors are caused by imperfections in the recording instrument, random digitization errors, and inadequate resolution of the digitizing machine.

These errors are inherent in the present methods used to obtain actual ground displacement. To isolate and retain valid digital records of the accelerogram within a realistic frequency range, a low-pass digital filtering scheme is used. (This method is described later under "Methods of Filtering"). A low-pass filter "filters out" data containing high frequency recording errors and allows the lower frequency (long period) component to pass. Unrealistic low frequency errors are eliminated by first isolating the long period component and then deducting it from the original data. This is a way of high-pass filtering the data.

It has been found through empirical studies ${ }^{(11,12)}$ that the limiting values of reliably retrievable digitized data are between 0.07 Hz and 25 Hz . Thus if any (sinusoidal-like) periods exist in the data longer than 16 seconds or shorter than 0.04 seconds ($T=\frac{1}{f}$), these periods will be eliminated.

Another source of error that any data reduction scheme must deal with is that of correlating actual ground displacement with instrument transducer response (See Figure 2-b). The relative movement x of the transducer is defined by the equation:

$$
\ddot{x}+2 \omega_{0} \delta_{0} \dot{x}+\omega_{0}^{2} x=-a
$$

where δ_{0} is the critical damping coefficient of the recording transducer, ω_{0} is the natural frequency, and "a" represents the absolute ground displacement. Since high frequency errors are magnified by differentiation, the acceleration is low-pass filtered before the instrument correction is applied.

A third major source of error associated with calculating ground displacement from acceleration is the location of a zero baseline to represent zero acceleration. Since the accelerogram trace is triggered by the earthquake itself, the initial portion of the record is lost, denying the seimologist of the location of initial zero acceleration. To overcome this handicap, the digitized acceleration values are leastsquare fitted so that the sum of the squares of the differences between the zero baseline and the acceleration values is a minimum. (The mathematics of this procedure is presented in Appendix A.) According to reference 12, integration of the leastsquared acceleration magnifies long period errors in velocity and displacement; therefore, these quantities are high-pass filtered to eliminate the low frequences. It will also be shown that the leastsquaring procedure disturbs the record by its own mathematical routine.
3. Integration

The digitized data representing an accelerogram trace (See Figure A-1) is in the form of a series of coordinates defining a distinct location on a two-dimensional plane. The acceleration function is thus considered piecewise continuous consisting of many short straight-line segments (i.e., the dashed line). To integrate a function such as this, the "Trapezoidal Rule" (a numerical method for integrating a continuous function) is utilized. The Trapezoidal Rule is defined as follows:

$$
v_{i}=\frac{\Delta t}{2}\left(a_{i}+a_{i-1}\right)
$$

where V is the integrated quantity of the function a and Δt is the interval along the time axis between corresponding consecutive values of a_{i}. Essentially, the function V represents the area under the acceleration curve between the time interval $t_{i} \rightarrow t_{i+1}$. The formula is an extension of the standard method for determining the area of a trapezoid.

Because of the nature of the input data (i.e., piecewise continuous), this method of numerical integration yields accurate results.

4. Methods of Filtering

Direct integration of accelerogram data from the digitized records does not accurately represent actual ground velocity and displacement. There are several reasons for this. Paramount among these is the fact that the recording instrument itself does not have the capability of recording frequencies higher than 25 Hz . Therefore, any data recorded at frequencies greater that 25 Hz are due to extraneous noise and do not represent accelerations caused by the earthquake.

Also it has been found ${ }^{(13)}$ that present digitization methods introduce extremely low frequency (long period) random and systematic errors. Double integration of acceleration curves tends to magnify small errors and yield large, unrealistic displacement amplitudes. There errors are insignificant up to periods of about 16 seconds, but for longer periods, the errors become quite serious and distort the actual resulting ground displacement. The lower limit of accurately retrieved data (by the methods described in reference 13) is about 0.07 Hz .

Any resulting data outside the range of 25 Hz and 0.07 Hz is considered to be contaminated with erroneous noise and should be filtered out of the input data.

For low-pass filtering, we use an Ormsby (14) numerical filter to eliminate higher frequencies and "pass" data which contain frequencies below a certain rolloff frequency (See Figure B-1). The transfer function of filter weights is unity for all data corresponding to a frequency between zero and ω_{c} and attenuates rapidly to zero for data corresponding to a higher frequency. (The mathematical proof of the low-pass filter scheme is detailed in Appendix B.) This allows low frequency data (below ω_{c}) to pass unaltered and reduces high frequency data to zero.

To filter out long period components from the input accelerogram, the data is first smoothed by a running mean filter of length 0.36 seconds. (15) This removes high frequency (short period) components and leaves behind components in the data which have a lower frequency.

The remaining data is further relieved of higher frequencies by filtering with the Ormsby low-pass digital filter. Briefly stated, the Ormsby low-pass filter scheme works as follows: the time varying input data $A(t)$ (acceleration as a function of time) is multiplied by certain weights (real numbers) such that their product yields output data containing only low frequency components of the data. In a sense, this process "filters out" unwanted higher frequencies. The problem is to specify a weighting function $h(t)$ to achieve this goal. The filtered input function can be represented by:

$$
F(A(t))=\sum_{i=-\infty}^{\infty} h_{i} A_{t-i}, \quad t=0, \pm 1, \pm 2
$$

where the h_{i} 's are the filter weights. If the input time series is represented by $A(t)=e^{i \omega t}$, then the output filtered
series will be $H(\omega) e^{i \omega t}$, where $H(\omega)$ is the transfer function of the filter. From the above equation it follows that the transfer function of the filter F is

$$
H(\omega)=h_{i} e^{i \omega t}
$$

The frequency transfer function $H(\omega)$ is specified to be unity in a frequency band where frequencies are allowed to pass unaltered and zero outside this frequency band. The weights associated with this desired transfer function are determined by:

$$
h_{i}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} H(\omega) d \omega
$$

Evaluating the above expression for the filter weights (See Appendix B) and specifying a straight line attenuation beyond the desired frequency $\left(\omega_{c}\right)$, yields the formula

$$
h_{n}=\frac{\cos 2 \pi n \lambda_{c}-\cos 2 \pi n \lambda t}{2 \lambda_{r}(\pi n)^{2}} \quad \begin{aligned}
n & =0, \pm 1, \ldots, N \\
\lambda_{t} & =\lambda_{c}-\lambda_{r}
\end{aligned}
$$

where λ_{c} and λ_{r} are normalized frequencies with respect to the frequency of the equally spaced time data. These weights are calculated in subroutine ORMSBY (loop 非17) and applied to the equally spaced input data (AENTER).

The resulting output data is the long period component which remains after low-pass filtering. This long period component (caused by errors in recording and digitizing) is deducted from the original accelerogram thus "filtering out" the undesirable low frequencies.

v. PHASE2 SUBROUTINE - INTEGRATION

1. Introduction

Subroutine PHASE2 is a computer program that filters and integrates digitized accelerogram data to provide a final time history of corrected acceleration, velocity, and displacement. The processing of accelerogram data is similar to that adopted by the California Institute of Technology, (10) The input data is in the form of coordinate values representing baseline corrected digitized time and acceleration data of an earthquake record. PHASE2 processes this data by filtering out frequencies unrelated to the actual earthquake and integrating (using the Trapezoidal Rule) to obtain the corresponding velocity and displacement. The output is in the form of a listing of the above quantities and a plotted graph, if desired.

The program is written in Fortran IV and has a capacity of up to 54.95 seconds of record and 5500 interpolated points. This is ordinarily large enough to accommodate most accelerograms.

This portion of the report is intended to inform the reader of the purpose of PHASE2 and how the program carries out the data processing. Justification of the various functions are contained in other portions of this report and in the noted references.

2. Purpose

The primary function of the PHASE2 program is to filter and integrate accelerogram data. Filtering is necessary to remove various types of errors that result in the process of obtaining digitized data from an accelerogram trace.

The second primary function of PHASE2 is to integrate
the corrected acceleration values. This process produces ground velocity and displacement as a function of time. These quantities can then be used in the design spectra for determining appropriate stresses of a structure during a similar eqrthquake.

3. How the PHASE2 Subroutine Works

PHASE2 basically consists of seventeen major steps which are as follows:

1. Read the title and main control information.
2. Read the baseline corrected accelerogram data, count the number of digitized points, and write on the output file.
3. Scale the data and check the time values for continuity.
4. Interpolate the data to 0.01 seconds.
5. Low-pass filter the data to remove undesired high frequencies.
6. Remove alternate data points.
7. Correct for instrument response to obtain absolute ground acceleration.
8. Leastsquare the acceleration values and save.
9. Apply a running mean filter (Holoway) to smooth the data.
10. High-pass filter the decimated data from Step 9 to eliminate unwanted low frequencies and deduct from acceleration saved in Step 8.
11. Integrate the new acceleration to obtain velocity; leastsquare the velocity to obtain a correction term and deduct the correction term from the acceleration.
12. High-pass filter the velocity.
13. Integrate the new velocity to obtain the displacement.
14. High-pass filter the displacement.

> 15. Correct the acceleration values for new changes to the velocity.
16. List final acceleration, velocity and displacement time histories.
17. Plot final acceleration, velocity and displacement time histories.

Section 1 (See flowchart, Figure 39, at end of this section.)
The first section of PHASE2 reads the title of the baseline corrected time-acceleration data and the main control data. The title is kept in memory to be output at various times in the program. The main control data gives the program necessary information for applying an instrument correction, scaling the input data to units of seconds and gravity, and plotting control.

Section 2

This section reads the input data in Subroutine REDATA and writes it out so the user can check the listing to see that it agrees with the intended input. If an error exists at this point, ail subsequent filtering and integration will be invalid. REDATA also checks the times to assure that all time values are increasing (or equal) and that the maximum difference between consecutive times does not exceed $1 / 4$ of a second. This is included because data points further apart than $1 / 4$ second are either inadvertantly omitted or such data produces erroneous output. If the data is further apart than $1 / 4$ second, the information is truncated after this point and the program continues processing with the truncated data.

Section 3

The computations of this section are performed in the subroutine DATALT (for "data alter"). Here the time values are scaled to units of seconds and the acceleration
values are scaled to units of $\mathrm{cm} / \mathrm{sec}^{2}$. If the first input time is not zero, this function is accomplished by deducting the initial time value from all subsequent times, thus relating the beginning of the earthquake to a zero time origin.

Section 4

In this section, the acceleration values are interpolated to 0.01 seconds apart. This operation is carried out in subroutine EQLSPC (for "equal spacing"). EQLSPC utilizes a linear interpolation scheme of the form:

ACCEL $_{i+0.01}=\operatorname{ACCEL}^{+}\left(\right.$IIME $_{i+0.01}-$ TIME $\left._{i}\right) X$

$$
\left(\operatorname{ACCEL}_{i+1}-\operatorname{ACCEL}_{i}\right) /\left(\operatorname{TIME}_{i+1}-\operatorname{TIME}_{i}\right)
$$

where $\mathrm{i}=1,2$, --- T representing equally spaced time values. Section 5

At this point, the data is low-pass filtered, i.e., all frequencies greater that 25 Hz are eliminated. The subroutine ORMSBY (after Joseph Ormsby who first introduced the filter) does all the low-pass filtering throughout PHASE2. Details of this filtering scheme are given in Appendix B.

Section 7
If values are given for making an instrument correction because of damping in the recording system, the correction is carried out according to the formula:

$$
\ddot{x}+2 \omega_{0} \delta_{0} \dot{x}+\omega_{0}^{2} x=-a(t)
$$

where: $\ddot{x}=$ the second derivative of acceleration and is computed in the program numerically; i.e.,

$$
\ddot{x}=\left(x_{i-1}-2 x_{i}+x_{i+1}\right) / \Delta t^{2}
$$

$\dot{x}=$ the first derivative of acceleration and is computed numerically; i.e.,
$\dot{x}=\left(x_{i+1}-x_{i-1}^{\dot{p}}\right) / 2 \Delta t$
$\mathrm{x}=$ the acceleration (this term actually represents displacement of the transducer mirror which is a measure of acceleration). See Figure 2-b.
$\omega_{0}=$ natural frequency of the accelerometer transducer computed by,
$\omega_{0}=2 \pi / T$ (where $T=$ natural period of transducer)
$\delta_{0}=$ percent of critical damping of seismometer
$a(t)=a b s o l u t e$ ground acceleration.

Section 8

This portion of PHASE2 is accomplished by subroutine LESTSQ (Leastsquare). The function of leastsquaring is to place a straight line through coordinate data which best represents a function of all the values. (The mathematical theory of leastsquaring is detailed in Appendix A). In subroutine LESTSQ, the acceleration values are leastsquare fitted to a new baseline and these values are placed in a separate array to be called upon later in the program.

Section 9
Subroutine HOLWAY smoothes the acceleration values by utilizing a running mean filter. This is done by replacing the value of a point x_{i} with the average of itself and nine adjacent points on each side of x_{i}.

High-pass filtering is accomplished by first decimating the data (i.e., using every 10th point) to acceleration values 0.2 seconds apart. The decimated data is then low-pass filtered to isolate the low frequencies, interpolated back to 0.02 second time intervals and deducted from the acceleration values saved in Section 8. By deducting low frequency data (not representing earthquake motion) from initial data, high-pass filtering is thus conveniently and simply carried out by utilizing only the low-pass filter. Section 11

In this portion of PHASE2, the new acceleration values are integrated to obtain velocity, the velocity is leastsquared and the leastsquare correction term ("B" in subroutine LESTSQ) is subtracted from the acceleration values to correct the acceleration for integration errors. This process is performed in the same LESTSQ subroutine by setting the parameter "NPASS" to 2, thus bypassing the leastsquaring operation until the acceleration has been integrated. Then the leastsquaring operation is performed to obtain the correction term.

Section 12
Here the velocity is high-pass filtered to remove the erroneous lower frequencies of velocity. This result is attained similar to Section 10 except that the velocity (instead of acceleration) is first low-pass filtered and then deducted from the previous velocity.

Section 13
In this section of PHASE2, the new velocity is integrated to obtain the corresponding displacement.

As in Section 12, the displacement is high-pass filtered to eliminate erroneous low frequencies.

Section 15
The error introduced by integration (of velocity in Section 11) is subtracted from the acceleration in subroutine INTERP. Although subroutine INTERP is called later in the high-pass filtering operation, the error compensation is applied by means of the parameter "NPASS". When NPASS=1, the acceleration is corrected. In the second call to INTERP, there is no need to further correction acceleration, NPASS is set to 0 , and the acceleration correction procedure is bypassed.

Section 16

This portion of PHASE2 lists the corrected timeacceleration values, time-velocity values, and time-displacement values. In each case, the values are given at intervals of 0.02 seconds. The listed arrays are output as follows: The time coordinates are given first and then the corresponding acceleration, velocity and displacement following immediately after.

Section 17
The final operation of the PHASE2 subroutine consists of plotting a coordinate graph of the final quantities of acceleration, velocity, and displacement. This is accomplished by subroutine PLTDAT (Plot data) and several Calcomp library subroutines. The plotted output size is controlled by the first control card. The three graphs plotted in this area represent the data listed in Section 16. In addition, the low-pass filter weights can be plotted.

A flow chart of the PHASE2 subroutine is shown in
Figure 39.

ARRAX					state-	Comment
ACCEL	TIME	VEL	DISP	LAST	IENT NO.	
Input Acceleration Data-ACCELl	$\begin{aligned} & \hline \text { Input Time } \\ & \text { Data-TIME } \\ & \hline \end{aligned}$			No. of Input Data Polnts		Read Time and Accel data -- Redata -- Place In Time and Accel arrays.
$\begin{aligned} & \text { Data-ACCELI } \\ & \text { ACELL * SCALEA * } \\ & \underline{980.665} \end{aligned}$	T1ME * SCALET					Scale Time and Accel data -- DATALT -- Place in Time and Accel arrays.
			Unequal Scaled Time	Max. no. of . 01 sec. intervals		Unequal spaced Time data stored in Disp array - PH2
ACCEL2	ACCELL TIME at 0.01 sec.					Interpolate Accel to get Acce12 at $0 . \overline{01} \sec$ -- EQLSPC -- uses unequally spaced time in Disp array.
accel 2		ACCEL2 Corrected at .01 sec .				If $\mathrm{N} 5 \mathrm{WAY}=1$, or $\mathrm{N} 6 \mathrm{~W} Y \mathrm{Y}=1$, call HORIZ. Accel2 corrected to make area under curve zero. Returned to Accel array after first placing in Vel array.
$\stackrel{\boxed{E L E} 4}{ } \text { at } 0.02$ sec.	ACCEL2 filtered or ACCEL3 BTIME at 0.02 sec.					If (CD.LE. 0.0 or T.LE.0.0) go to 40 , otherwise call Ormshy 25 - 27 cycles -- 1ow pass. Filtered Accel stored in Time array. Then PH2 transfers the filtered Accel back to Accel array -- Accel4 at . 02 sec . Create B-Time. Go to 90
$\overline{\operatorname{ACCEL}} 4$ at 0.02 sec.	BTIME at 0.02 sec.				40	Decimate Acce 12 to get Accel4 at . 02 seconds. Create B-Time.
						If (CE.LE.0.0 or T.LE.0.0) go to 110. No instrument correction is made. Go to 90
ACCEL4	$\begin{aligned} & \text { BTIME at } 0.02 \\ & \text { sec. } \end{aligned}$		ACCEL4		90	Correct for instrument response. Accel first placed in Tinst (disp) then replaced in Accel array.
					110	If (NEWNAY EQ. 1) go to 130. If (N2WAY EQ. 1) go to 130 If (NWWAY EQ. 1) go to 130 . If (NAWAY EQ. 1) go to 130 If (NWWAY EQ. 1) go to 270 If (KNWAY EQ. 1) go to 330 Go to 150.
AcCEl4 Corrected					130	Call HoRIZ. NPASS $=6$. Correct Acce14 to make area under Accel4 curve zero. Return to Accel array after first placing in Vel array. Go to 170 .
		ACCELS New Accels	temp (VEL) New VEL		150	Call LESTSQ. NPASS $=1$. Accel4 now leastsquar to get Acce15. Integrate Acce15 to get Vel (temp). Leastsquare Disp array to get velocit correction B, and subtract B from Accel5 to ge new Acce15. Correct Vel $=$ temp - correc.

ARRAY					STATEMENT NO.	COMMENT
ACCEL	TIME	VEL	DISP	L,AST		
ACCELS					170	Acce15, replaced in Accel array. - PH2
						If (N3WAY EQ. 1) go to 270.
	- ACCEL6(H. filtered) TIME at .02 sec .				190	Call 1 以LWAY. Places filtered Accel in Time array then replaces it into Accel array as Accel6.
ACCEL7 Decimated at .2 sec .	CTIME at 0.2 sec .					Accel data now decimated - PH2.
ACCEL8 at 0.2 sec .	ACCEL8 at 0.2 sec .		CTIME at 0.2 sec .			Call ORMSBY to filter Accel. Stores filtered Accel as Accel8 in Time array. PH2 replaces it in Accel array and stores CTIME at 0.2 sec . In Disp array.
ACCEL8 at 0.02 sec.	TIME at 0.02 sec .					EQLSPC interpolates Accel at . 02 sec . lises Time at .2 sec . In Disp array. Recreates Time at .02 sec .
$\begin{aligned} & \text { ACCEL9 }= \\ & \text { ACCEL5 - ACCEL } 8 \end{aligned}$					260	Subtract Accel 18 from Acce15 to get Acce19PH2.
					270	If (N2WAY EQ. 1) write final Accel. If (N3WAY EQ. 1) write final Accel. If (NSWAY EQ. 1) write final Accel. If (N2WAY EQ. 1) go to 280 If (N3WAY ER. 1) go to 280 If (NSWAY EQ. 1) go to 280 Go to 290.
		Integrated VEL			280	Call HORIZ. NPASS $=2$. Tntegrate Accel to get Ve1. Go to 300.
Accel9 Corrected for Velocity Change at 0.02 sec		VEL Corrected	VEL(TEMP)		290	Ca11 LEASTSQ. NPASS $=2$. Integrate Acce 19 to get velocity (temp) in Disp array. Then leastsquare velocity and deduct correction term B from Acce 19. Correct Vel $=$ Temp $-A-B * T i m e$.
					300	If (N2WAY EQ. 1) go to 390 If (N3WAY EQ. 1) go to 390 If (N5WAY EQ. 1) go to 390
					330	Vel data now decimated to get vel 1 at .2 sec, - PH2.
	ORMSBY Filtered VEL1 at 0.2 sec .					Call ORMS $\overline{\mathrm{Y}}$. Delt $=2$. Filtered Vel placed in Time array.
ACCEL9 Corrected for Velocity change	ORMSBY Filtered vet. 1 at 0.02 sec .					Ormsby filtered Vel placed in Vel 1 array at $.2 \mathrm{sec} .-\mathrm{PH} 2$. Call INTERP. Vel 1 is returned through exft into Time array at .02 sec . Acce 19 corrected for change in velocity due to filtexing.

FIGURE 39 (Cont.)
FIGURE 39 (Cont.)

VI. INTEGRATION - MATHEMATICAL FUNCTIONS

1. Introduction

How valid is the time-displacement curve as a result of the integration procedures of PHASE2? One way to study this is to input digitized time-acceleration data for mathematical functions with a known time-displacement history and compare the known history with the results of PHASE2.

2. Constant Acceleration Function

Figure 40-a shows a constant time-acceleration curve, extending from zero to 20 seconds, at a constant acceleration rate of $2 \mathrm{~cm} / \mathrm{sec}^{2}$. It was digitized every $1 / 15$ second,

FIGURE 40 PROGRAM HISTORY - CONSTANT TIME-ACCELERATIOÑ CURVE - CAL TECH VERSION
resulting in 301 points, and processed by PHASE2. Write statements were inserted at various stages of the program so that the authors could follow the changes in the data. Follow the flow path in the program via Figure 39.

SCALET was given a value of 1 , and SCALEA was given a value of $1 / G$. Therefore, through the REDATA and DATALT subroutines the data was interpolated at every 0.01 seconds resulting in 2001 points of constant value at $1.999 \mathrm{~cm} / \mathrm{sec}^{2}$. (Round off error truncated the results from 2.000 to 1.999 $\mathrm{cm} / \mathrm{sec}^{2}$.) Since the data originated from a mathematical function, ISHORT was given a value of 1 to bypass the instrument correction statements, there being no damping to consider.

Alternate data points were then eliminated in PHASE2, resulting in 1001 points of constant value at $1.999 \mathrm{~cm} / \mathrm{sec}^{2}$. The maximum time was still 20 seconds.

The program next called the LESTSQ subroutine to leastsquare the data. The leastsquare correction became a horizontal straight line at a value of $1.999 \mathrm{~cm} / \mathrm{sec}^{2}$. The correction line serves the function of a new baseline for the data. Differences between the acceleration value of the baseline and the acceleration input data to LESTSQ now became the new data, which in this case resulted in a zero value of acceleration for the entire record, as shown in Figure 40-b. Thereafter, no changes in acceleration occurred throughout the remainder of the program. Also the resulting velocity and displacement curves became zero throughout the record. Compare the results with the known integration for velocity and displacement by the mathematical procedures of calculus, Figure 41. Obviously there is an incompatibility between realistic results and the computer program results.

(b)

(c)

0	5	10	15	20

FIGURE 41 INTEGRATION OF CONSTANT TIME-ACCELERATION CURVE - CALCULUS PROCEDURE

We must be careful about the conclusions we draw from this first example. A constant acceleration curve is not an earthquake type of curve, since the final velocity never returns to zero.

The leastsquaring procedure, intended to recognize that initial and final velocities should be zero with earthquake data, fit the best average straight line to the input
data so that the sum of squares of the deviations from the new baseline to the curve are minimized. Even in this case had a horizontal baseline been placed so that the area under the acceleration curve was zero, the same computer results would have been obtained. Therefore, one conclusion we can draw from the above results is that the program cannot correctly operate on data unless the initial and final velocities are zero.

3. Sawtooth Acceleration Curve

Let us next consider a sawtooth acceleration curve, Figure 42 , whose inital and final velocities do become zero by calculus integration. The time-acceleration curve was digitized at $1 / 15$ second intervals, and processed through PHASE2. $\operatorname{SCALET}=1, \operatorname{SCALEA}=1 / G$ and $\cdot \operatorname{ISHORT}=1$. Therefore, the curve remained unchanged through the REDATA and DATALT subroutine. The data was interpolated in EQLSPC to 0.01 seconds, resulting in 2001 points and later cut to 1001 points in PHASE2 as every alternate point was discarded.

In the LESTSQ subroutine the area under the curve was calculated as zero (correct) and the displacement as 249.824 cm (round off from 250 cm). $A=3.7474, B=-.3747$.

Figure 43 shows the changes in data at various stages in the program. Now the new baseline became a sloping straight line at a value of 3.7474 and a negative slope of -.3747 . When the acceleration data is adjusted to the new baseline, we observe a startling change in the data and can draw an immediate conclusion: Even if the initial and final velocities become zero, the leastsquaring method will distort the original data. In some cases such as an earthquake record, with many cycles of alternate signs for the acceleration, the distortion

FIGURE 42 INTEGRATION OF SAWTOOTH TIME-ACCELERATION CURVE CALCULUS PROCEDURE

FIGURE 43 PROGRAM HISTORY - SAWTOOTH TIME-ACCELERATION CURVE CAL TECH VERSION

FIGURE 43 Cont.
might be slight; however, in this case the distortion completely changes the acceleration data as shown in Figure 43-c.

For completeness of information on what happens to the data in the Cal Tech program, we shall discuss the results of the program further; although changes appear to be in order. These changes will be considered later.

The leastsquared acceleration data is next integrated to give a velocity curve of the type shown in Figure $43-\mathrm{c}$. Compare with Figure $42-\mathrm{b}$. The HOLWAY subroutine is next called to smooth out the high frequencies in the acceleration. A small change in the acceleration data occurs, as shown in Figure $43-\mathrm{d}$, particularly near the peaks and ends of the curve. In the filtering method, (the Holoway method, or equally weighted running mean filter), each data point is replaced by the average value of itself and nine points on either side of the point in question. At the ends of the curve the data is extended as an even function outside of the time interval zero to Time of Last(T) as follows:

$$
\begin{aligned}
a(-\tau) & =a(\tau) ; & T<\tau<0 \\
a(T+\tau) & =a(T-\tau) ; & T<\tau<2 T
\end{aligned}
$$

According to the Cal Tech report ${ }^{(16)}$ this refinement at the ends of the acceleration curve was supposed to eliminate small errors in the velocity and displacement curves near the beginning and end of a record.

Next the Holoway filtered data is again filtered to eliminate low frequencies (long periods) using a travelling

[^14]Ormshy Filter. To reduce the computer costs the Holoway data is first decimated to reduce the number of data points. Now each Ormsby filter weight is identified with $(2 n+1)$ corresponding decimated acceleration data points, where n is the number of weights in the filtering window to the right or left of the data point being replaced. Each data point is then multiplied by the corresponding Ormsby filter weight and the center acceleration point in the series is replaced by the sum of the products. Naturally the sum of the individual filter weights must be one; otherwise, the area under the filtered acceleration curve would be different than the area under the curve being filtered. Once again the acceleration curve is extended as an even function outside of its original end points. Furthermore, n filter weights cannot be greater than the number of points in the decimated curve before extension. Figure 43-e shows the filtered acceleration data, and Figure $43-f$ shows the resulting acceleration curve after the filtered data has been subtracted. The integrated velocity curve using the new acceleration is also shown.

When the velocity curve is integrated, small errors are reported to occur in the ground displacement. (17) Therefore, the "standard" baseline correction procedure consists of high-pass filtering the ground velocity and displacement curves, with the velocity curve extended as an even function outside the original end times before filtering. Prior to filtering the velocity curve is leastsquared, Figure 43-g. The Ormsby filtered velocity is shown in Figure 43-h. Finally, the velocity curve is integrated to give the displacement curve, which is also Ormsby filtered to remove long periods; however, in this curve the displacement curve is extended as a zero function outside of its original time span.

Figure 43-i shows the final acceleration, velocity, and displacement curves. None bear any resemblance to the calculus integrated set, Figure 42. We, therefore, now consider changes to the Cal. Tech. program to improve the situation.

The first change is to replace the leastsquaring procedure by the authors' baseline correction method (Subroutine HORIZ). In HORIZ a horizontal baseline is chosen such that the area under the acceleration curve is adjusted to zero. With this procedure we still maintain zero initial and final velocity, but do not materially disturb the shape of the original input curve. Figure 44 shows the data changes in the various steps of the revised program. To produce these changes, one merely enters a value of 1 for NEWWAY on the third control data card of PHASE2. Figure 44-a shows the input acceleration data, while Figure $44-\mathrm{b}$ shows the integrated velocity. Already we see an improvement as the velocity curve is almost the same as that of Figure 42.

Figure $44-\mathrm{c}$ shows the Holoway filtered acceleration data - little change. But, note the remarkable change during the Ormsby filtering, Figure 44-d. This time the Ormsby filter severely distorts the acceleration data, Figure 44-d. When this new data is integrated to obtain the velocity curve, no resemblance to the velocity curve of Figure 42 is noted. Further changes to the data by the revised program still results in a meaningless displacement curve as compared to the calculus results (Figure 42).

To ascertain if the elimination of the Ormsby filter for velocity and displacement would result in better correlation between the computer integration and the calculus integration, N2WAY was given a value of 1 in the fourth control card of PHASE2, and the data plotted through the various steps of the

FIGURE 44 PROGRAM HISTORY - SAWTOOTH TIME-ACCELERATION CURVE NEWWAY VERSION

FIGURE 44 Cont.
numerical integration, Figure 45. Sure enough, the displacement data is now beginning to look more like the corresponding data of Figure 42;.but of a much lower amplitude. The problem lies with the Ormsby filter on the acceleration.

We have now reduced the computer program to a much earlier version by the authors of the Cal. Tech. program (9) except for two changes:
A. Reference 9 considered the acceleration data to be zero outside of the original time domain for both the Holoway and Ormsby filtering, and
B. Reference 9 used the leastsquaring procedure for adjusting the acceleration baseline instead of the procedure now used by subroutine HORIZ.

It is interesting to note that if the Holoway and Ormsby filters were eliminated for the acceleration curve, the Cal. Tech, version in reference 9 would become similar to the Boyce computer program. ${ }^{(7)}$ Minor differences exist in the manner of leastsquaring: Boyce (New Zealand) uses a parabolic baseline correction on velocity, while Trifunac (Cal. Tech.) uses a straight line correction on acceleration. Details of leastsquaring for both programs are described in Appendix A.

What would happen if the Holoway and Ormsby Filters were eliminated on the acceleration curve?. Would we get the identical curves to Figure 42? To accomplish this a new version N3WAY was given a value of 1 on the third input control card of PHASE2. The results are shown in Figure 46. They are identical to Figure 42. We have now returned to a computer program similar to Housner's original version, except for the manner of leastsquaring of the acceleration data. (18)

4. Cosine Curve

In preparation for an experiment to be described in the next chapter approximating a cosine variation, a sevencycle cosine curve was integrated using N3WAY $=1$. The results are shown in Figure 47. A careful scrutiny of the computer printout showed the problem to occur with the last data point. The curve goes to 5.83 seconds (approximately the time duration of the experiment). When the original data is interpolated to 0.01 seconds everything goes well, but when every other point is discarded (data now at 0.02 seconds) the 5.83 point is lost. The baseline adjustment is in error by a small amount, but enough to give a larger error in the displacement record. Accordingly, the baseline adjustment was made while the data was interpolated at 0.01 seconds; then every other point was discarded ($\mathrm{N} 5 \mathrm{WAY}=1$). * The result is excellent as shown in Figure 48. Figures 47 and 48 illustrate the importance of careful attention to end points in an array. Only one point made the difference; put Figures 47 and 48 together over a light table and no apparent difference is discernable in the acceleration and velocity curves. Figure 49 shows the results of using the basic Cal. Tech. program for the same cosine curve.
5. Justification of Leastsquaring and Filtering

To deal with pure mathematical functions ignores the true nature of earthquake records; they don't occur as precise mathematical functions, they are more random oriented. A true horizontal acceleration such as in Figure 40 will not record as a horizontal acceleration. In the first place, there is

[^15]

start-up time to be considered as an accelerometer system is turned on. The horizontal straight line could be recorded as a sloping curve (if not altogether straight) as the instrument is warming up. The leastsquaring method now becomes mandatory to correct for the instrumentation error by adjusting the sloping recorded acceleration curve to one more resembling the true time-acceleration history. In the second place, the time delay at the start of recording (see Figure 1) means that we have lost the starting zero acceleration value. With the end point of the record possibly not defined because of drift in the recording we have no alternative but to turn to an adjustment method like leastsquaring to try to locate a baseline that makes the beginning and end velocities zero; end conditions we do know.

Cyclic variations in the recording due to instrument drift or later in PHASEl due to the digitization processing also makes filtering mandatory.

In effect we can say that if the record is perfect, the leastsquaring and filtering schemes will distort the record because they are trying to eliminate something that wasn't there; but if the record does contain errors, then these schemes hopefully are of a nature as to mitigate the continuation of the errors when the time-displacement history is obtained. We are now back to the Cal. Tech. program.

Previously we have discussed how errors due to leastsquaring and filtering are introduced in short records. It will be profitable to further examine their production in long records, say thirty seconds; and if possible to determine a change in the program to eliminate them. But first we should also examine the nature of the integration process.

6. Nature of Integration

Consider an acceleration sine curve of the form:

$$
A=\operatorname{sinc} \pi t
$$

By integration the velocity becomes

$$
v=\frac{1}{c} \sin c \pi t+C_{1}
$$

If the velocity is zero at time zero, $C_{1}=0$. The displacement becomes:

$$
d=\frac{1}{c^{2} \pi^{2}} \sin c \pi t+C_{2}
$$

If the displacement is zero at time zero, $C_{2}=0$. Notice the following conditions:

If \begin{tabular}{rl}

$c^{2} \pi^{2}<1.0 \quad$ \& | The amplitude of displacement is |
| :--- |
| greater than the amplitude of |
| acceleration. |

$=1.0 \quad$ \& | The amplitude of displacement |
| :--- |
| equals the amplitude of acceler- |
| ation. |

$>1.0 \quad$ \& | The amplitude of displacement is |
| :--- |
| |
| less than the amplitude of accel- |
| eration. |

\end{tabular}

To put a scale on thse effects let us consider the frequency range between .1 Hz and 12 Hz .* If we take an average frequency, say 5 Hz at a peak acceleration of 1 G , then the peak displacement will be $\frac{1}{10^{2} \pi^{2}} 980.665=.994 \mathrm{~cm}$ or about $\frac{1}{1000}$ the magnitude of the peak acceleration. Now let the 5 Hz extend over a thirty second record, where a leastsquaring

[^16]acceleration end changes of say $1 \mathrm{~cm} / \mathrm{sec}^{2}$ occurs. The peak displacement due to that long period change will now be
$$
\frac{1}{\left(\frac{1}{60}\right)^{2} \pi^{2}}(1)=364.757 \mathrm{~cm}
$$

The long period now completely dominates the time-displacement curve while the 5 Hz frequency is reduced to a low level noise curve superimposed on the lower frequency. We are now at the situation where the computer program introduces long period errors into a perfect record and integrates these errors as the final displacements - unless, of course, we high-pass filter the displacement record above the error frequency level.
7. .625 Hz Sine Curve

Figure 50 shows the integrated acceleration, velocity, and displacement curves by the Cal. Tech. program for an input sine acceleration curve of period 1.6 seconds and peak amplitude $4.836 \mathrm{~cm} / \mathrm{sec}^{2}$. Essentially the input data is a .625 Hz sine curve extending over a time domain of 28.8 seconds. Thus there are 18 full cycles to the input data. To follow the changes in the data we shall now show printer plots at the various stages of the program. Printer plots have a background grid, the computer paper, which makes it easier to read small changes in the data than the Calcomp Plotter plots, and is much cheaper to produce. Figure 51-a shows the plot of about $1 / 2$ the input data created at 0.01 seconds. The data has an even number of spaces per $1 / 4$ cycle, hence there is no problem with peaks remaining unchanged when the data is reduced to 0.02 second intervals. Figure 51-b shows the full record at 0.01 second intervals. After leastsquaring

FIGURE 51-a PRINTER PLOT OF . 625 HZ SINE CURVE AT INPUT DATA, 0.01 SECOND INTERVALS

FIGURE 51-b PRINTER PLOT OF . 625 HZ SINE CURVE DECIMATED TO 0.02
the new baseline equation is $A=.2565-0.0178 t$, indicating an immediate change in the record, albeit small. Figure 51-c shows the leastsquared acceleration. Figure 51-d shows the acceleration after Holoway filtering. The changes are evident. The acceleration curve tends to slope upward to the right. Figure 51-e shows the acceleration after Ormsby filtering. A small cyclic variation is introduced. Figure 51-f shows the final acceleration after correction because of changes in the velocity due to leastsquaring the velocity. Figure 51-g illustrates the leastsquared velocity prior to filtering, while Figure 51-h shows the final velocity after filtering. These large cyclic variations in velocity lead to tremendous changes in the integrated displacement, Figure 51-i. Further changes in the displacement due to filtering at .067 Hz do little to correct the final displacement as shown in Figure 51-j. Notice that the long period curve is approximately at .07 Hz .

Figure 52 shows an improvement in the situation as the Ormsby filter frequency is raised to 0.1 Hz . (This is accomplished by letting N4WAY = 7.) The displacement pattern is st.arting to straighten out. We are starting to filter above the error band frequencies. Figure 53 shows excellent results as the filter frequency is raised to 0.3 Hz (N4WAY = 8). We expect the final displacement by calculus to be a sine curve with a peak value of $\frac{4.836}{1.25^{2} \pi^{2}}=.313 \mathrm{~cm}$. The printout shows a peak value of 0.331 cm . except at the last cycle which has a maximum negative peak of 0.372 cm .

If our theory is correct, and the filters are working properly then the displacement record should practically vanish when the filter frequency is raised above .625 Hz .

FIGURE 51-c PRINTER PLOT OF . 625 HZ SINE CURVE - ACCELERATION AFTER

FIGURE 51-d PRINTER PLOT OF . 625 HZ SINE CURVE - ACCELERATION AFTER

FIGURE 51-e PRINTER PLOT OF . 625 HZ SINE CURVE - ACCELERATION AFTER

FIGURE 51-f PRINTER PLOT OF . 625 HZ SINE CURVE ~ ACCELERATION CORRECTED

FIGURE 51-g PRINTER PLOT OF . 625 HZ SINE CURVE ~ LEASTSQUARED VELOCITY

FIGURE 51-h PRINTER PLOT OF . 625 HZ SINE CURVE \sim FINAL VELOCITY AFTER

FIGURE 51-i PRINTER PLOT OF . 625 HZ SINE CURVE - INTEGRATED DISPLACE-

FIGURE 51-j PRINTER PLOT OF . 625 HZ SINE CURVE - FINAL DISPLACEMENT AFTER FILTERING

Figure 54 shows the results of changing the Ormsby filter to 1 Hz (N4WAY = 10). The displacement record is wiped out as predicted. Only an end noise remains skewed to the right of the record because of the antisymmetric arrangement of input data about the time centerline.

8. Symmetrical Sawtooth

To see what happens when a long period record is evaluated, a symmetrical sawtooth acceleration record was processed through the Cal. Tech. program, Figure 55. As expected the displacement record shows a symmetrical long period. This time there is no change in the acceleration data due to leastsquaring. The correction baseline has the formula $\mathrm{A}=$ $0+0 t$. Figure 56 shows the changes by means of printer plots. Figure 56-a shows the acceleration data prior to Holoway filtering, and Figure 56-b shows the data after Holoway filtering. Very little change has occurred. Figure $56-\mathrm{c}$ shows the Ormsby filtered data and Figure 56-d the acceleration after subtraction of the filter; a tremendous change in the shape of the acceleration curve. This shows why it would have been impractical to try to change Figure 43 by the simple expedient of changing the filter frequency. The result would be to completely wipe out the entire record. Figure 56-e shows the integrated velocity and Figure 56-f the final velocity. Figure 56-g shows the integrated displacement and Figure 56-h the filtered displacement with a .067 Hz filter. This filter frequency hardly makes any difference in the long period displacement curve. Contrast these previous results with the calculus integration, Figure 57.

Now lets see what happens when the Ormsby filter frequency is changed to 1 Hz , Figure 58. As expected the velocity and displacement records are completely wiped out,

$\forall-95$

FIGURE 56-a PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION ACCELERATION PRIOR TO HOLOWAY FILTERING
$.3906 E+01$
FIGURE 56-b PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION
$2-95$

FIGURE 56-c PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION ORMSBY FILTER OF ACCELERATION

FIGURE 56-d PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION ACCELERATION AFTER ORMSBY FILTERING

FIGURE 56-f PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION -

FIGURE 56-h PRINTER PLOT OF SYMMETRICAL SAWTOOTH ACCELERATION -

FIGURE 57 CALCULUS INTEGRATION TO VELOCITY AND DISPLACEMENT FROM SYMMETRICAL SAWTOOTH ACCELERATION CURVE

since these curves have periods longer than 10 seconds, Figure 56-h. In fact, the printer plots show identical scenes in Figures 56-a through 56-e; and then the Ormsby filtering on velocity reduces the remaining plots to a low noise level. This time, as expected, Figure 58 shows a fairly symmetrical noise curve about the centerline point since the input was arranged that way.

One conclusion we can draw from this example is that when long periods are in the frequency range of the error frequency band, it may be impossible to guarantee the accuracy of the integrated time-displacement curve. Recall that the long period errors of Figure 50 were put into the program by the leastsquare procedure, Holoway and Ormsby filters; they were not part of the original record.

9. Composition Input Data

To check the accuracy of the leastsquare procedure a composition input curve was prepared by superimposing a 3 Hz sine curve with a 20 Hz sine curve and a random number distribution together with a $1 / 10$ radian/sec sloping line. Figure 59 shows the integrated results, and amply demonstrates the leastsquaring procedure is doing its job. Figure 60 used only the same random numbers as input, with a resultant time-displacement similar to Figure 59. Thereafter, to make sure no such frequencies could occur in the random number system, the acceleration record was first high-pass filtered at 2 Hz , Figure 61, and then integrated. It is interesting to note that the shape of the time-displacement history is similar for Figures 59, 60, and 61; verifying that the the displacements are in error and developed by the original program methodology.

FIGURE 60 PHASE2 RESULTS FOR RANDOM NUMBERS ALONE ~ CAL. TECH. VERSION

VII. EXPERIMENTATION

1. Introduction

In this chapter it will be demonstrated that the Cal. Tech. program, with a suitable change in the Ormsby filter frequency, can produce a time-displacement curve that will accurately match a measured time-displacement history on the condition that the displacement curve oscillates about a zero baseline and has only frequencies higher than the filter frequency. This will put a restraint on the type of earthquake displacement records that can be predicted, i.e., those having no significant final displacement from the original position of the earth.

2. Free Swing Experiment

Prior to a random motion experiment it was decided to produce a free swing experiment for instrument calibration purposes. Figure 62-a shows a pendulum device used to generate accelerations. A piezoelectric accelerometer was attached to the pendulum and connected to a Sanborn recorder to create the acceleration trace. To form the pendulum two vertical plates were attached to a top and bottom plate to form a parallelogram. The upper plate was fixed in a horizontal position. As the pendulum was rotated along its path, the bottom plate always remained in a horizontal position regardless of the angle of the pendulum. A Model 818 Piezotron Acceleromater*, Figure 62-b, was rigidly attached to the horizontal plate to sense accelerations normal to the plate; however, only the vertical components of acceleration were recorded.

[^17]

FIGURE 62-a PENDULUM DEVICE USED TO GENERATE ACCELERATIONS

FIGURE 62-b MODEL 818 PIEZOTRON ACCELEROMETER

The piezotron accelerometer contained a compressiontype piezoelectric sensing element, Figure 63, which included a seismic mass and stacked, parallel-connected quartz crystals (or plates), which were assembled under controlled preload pressure into the preload sleeve. The sensing element was mechanically isolated from the housing, preventing mounting strain from causing either spurious signals or zero shift. The mounted resonant frequency was 31.5 KHz , well above the range of strong motion instruments. The frequency response was from 0.8 Hz to 5000 Hz (within $\pm 6 \%$) and had a zero voltage deviation in the frequency range of 7.5 to 900 Hz at $+75^{\circ}$ (see Figure 64).

To calibrate the accelerometer system, the pendulum was dropped in a single free swing and the accelerometer was caused to pass between two flashlights and photoelectric cells, as shown in Figures 62-a and 65-a. The photoelectric cells were connected to a voltage amplifier (see the circuit diagram of Figure 65-b) which was then connected to a Tectronic Type 551 Dual Beam Oscillograph with Type 53A plug-in units for voltage response. The dual traces were then recorded on polaroid film, Figure 66, showing blips when the accelerometer interrupted the flashlight beam to its corresponding cell.

From mechanics it is known that the radial component of acceleration is $\frac{\mathrm{v}^{2}}{\mathrm{r}}$. At the bottom swing of the pendulum the radial acceleration is all that exists and is directed upward being normal to the bottom plate. From Figure 66-a the following calculations are made:

Sweep at $0.02 \mathrm{sec} / \mathrm{cm}$ on the screen
Correction of 1.1 by timing with a stopwatch makes the sweep speed $0.02(1.1)=.022 \mathrm{sec} / \mathrm{cm}$.

Distance between blips $=1.25 \mathrm{~cm}$ on the screen.
Distance between photocells = 10 cm .

FIGURE 63-a BASIC DIMENSIONS OF MODEL 818 PIEZOTRON ACCELEROMETER

FIGURE 63-b CROSS SECTION OF PIEZOTRON ACCELEROMETER
TABLE IV.
LOW-FREQUENCY RESPONSE CHARACTERISTICS

Model	818	817
Time Constant	0.2 sec	2.0 sec
Attenuation	5.6 Hz	0.56 Hz
-1 percent	4.0 Hz	0.40 Hz
-2 percent	2.4 Hz	0.24 Hz
-5 percent	1.6 Hz	0.16 Hz
-10 percent	0.8 Hz	0.08 Hz

FIGURE 65-a PANEL VIEW OF PHOTOELECTRIC CELL DEVICE TO MEASURE THE PENDULUM VELOCITY

FIGURE 65-b CIRCUIT OF VOLTAGE AMPLIFIER FOR PHOTOCELL DEVICE

(a) RECORDING SPEED AT $0.02 \mathrm{SEC} / \mathrm{CM}$

(b) RECORDING SPEED AT $0.10 \mathrm{SEC} / \mathrm{CM}$

FIGURE 66 PHOTOGRAPHS SHOWING BLIPS ON DUAL BEAM TRACES AS PENDULUM PASSED IN FRONT OF PHOTOCELLS

$$
\begin{aligned}
& \mathrm{v}=\frac{10}{(1.25)(.022)}=363.63 \mathrm{~cm} / \mathrm{sec} . \\
& \text { With a pendulum radius of } 22.76^{\prime \prime}=57.81 \mathrm{~cm} . \\
& \mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\frac{363.63^{2}}{57.81}=2287.26 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec} .
\end{aligned}
$$

For Figure $66-\mathrm{b} \mathrm{a}=1689.26 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}$. For a sweep of $0.05 \mathrm{~cm} / \mathrm{sec}$ (trace not shown) $a=2017.69 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}$. An average value of $1998.07 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}$ could then be used to scale the lowest peak on the acceleration curve in the free swing experiment; however, the maximum value that can be developed from theoretical mechanics is 2 G or $1961.33 \mathrm{~cm} / \mathrm{sec} /$ sec, so that was used instead. This is on the basis that the acceleration at the beginning of the swing is G. Figure 67 shows four frames from a film record in a further free swing experiment that shows a free block dropped simultaneously with the pendulum keeping its relative position during at least the first half of the drop height and verifies that the initial acceleration was close to G.

In the free swing experiment the pendulum was initially set into motion from a horizontal position and allowed to swing back and forth for 5.58 seconds through approximately 7 cycles. While the pendulum was swinging, the accelerometer was sensing vertical accelerations which were recorded by means of a Sanborn recorder. The results appeared on the recording paper as a sinousoidal-like curve.

During the free swing experiment the action was recorded by a movie camera at the rate of 48 frames per second. A grid made of one-inch squares was placed in the background so that the relative vertical displacement of the pointer at the bottom of the horizontal plate could be retrieved from the film record. A microfische film reader was used to record the relative

(a)

(b)

FIGURE 67 FOUR FRAMES FROM FREE SWING MOTION PICTURE RECORD

FIGURE 67 CONTINUED.
vertical position of the pointer by reading each frame. The record of actual vertical displacement is shown in Figure 68.

Meanwhile the accelerometer trace was digitized on the Electrak machine and processed through the PHASEl program where a plot of the acceleration trace was prepared, Figure 69. The data was corrected to eliminate accidental digitization errors, scaled, baseline corrected, and then punched on computer cards for double integration in the PHASE2 program. An assessment was made of the beginning and end of the acceleration record and the portion shown in Figure 70 was first used for integration.

Figure 71 shows the integration via the original Cal. Tech. program. With the displacement data approximating at 2 Hz variation the Ormsby filter was next changed to 1 Hz (N4WAY $=10$) and the free swing data once again integrated, Figure 72. When we compare the displacement results to those of Figure 73, we observe a very good match, provided the actual displacement record is also filtered so that oscillations occur about a new baseline where the initial and final displacements are zero. In Figure 73 the PHASE2 program was used to high-pass filter the input displacement data at 1 Hz by letting N2WAY = 8 and N4WAY = 10. The input displacement data was then placed in the acceleration array for plotting purposes only (the acceleration axis is ignored) while the filtered displacement was printed correctly at the bottom of the figure.

To ascertain if the length of acceleration record used might influence the displacement results both end extensions

FIGURE 68 PLOT OF ACTUAL DISPLACEMENT OF FREE SWING EXPERIMENT

FIGURE 69 FREE SWING ACCELERATION TRACE ON SANBORN PAPER

FIGURE 71 PHASE2 RESULTS OF FREE SWING RECORD ~ CAL. TECH. VERSION

of the acceleration record were used in a new integration of the free swing experiment, Figure 74. The results are practically unchanged from Figure 72.

3. Random Motion Experiment

The last experiment was a random motion experiment, Figure 75, in which the pendulum was started from zero and pulled by a rope through displacements simulating a random motion. Since there cannot be negative vertical values when measured from the bottom of the swing (even though the pendulum swings on opposite sides of the bottom position) it is necessary to create a new baseline such that beginning and end displacements are zero. This is accomplished by highpass filtering the displacement data as shown in Figure 76.

After processing the acceleration input data in PHASE2, the results are shown in Figure 77 for the original Cal. Tech. version; Figures $78,79,80$, and 81 when the Ormsby filter is changed to $0.1 \mathrm{~Hz}, 0.3 \mathrm{~Hz}, 0.5 \mathrm{~Hz}$, and 1 Hz respectively. The change to 1 Hz most nearly matches the integrated time-displacement history to the actual timedisplacement history of Figure 76.
4. Discussion

From these limited experiments it would be unwise to declare 1 Hz as the cut-off frequency in the Ormsby filter for strong motion instruments. The piezotron accelerometer used had considerable attenuation in the very low frequencies; and since both experiments (Free Swing and Random) were done with a pendulum, the fundamental cyclic frequency stayed practically constant and affected only the amplitude, not the shape, of the displacement record. These attenuations were corrected

FIGURE 75 RANDOM MOTION EXPERIMENT MEASURED DISPLACEMENT CURVE

嵒**RANDOM MOTION DISPLACEMENT FILTERED RECORD LE. 1 HZ

FIGURE 76 FILTERED RANDOM MOTION MEASURED DISPLACEMENT CURVE

for in the scaling to match the integrated and measured records. However, a strong motion instrument is capable of a constant sensitivity from 0.1 to 10 Hz , as for example the U. S. C. \& G. S. Model II Strong-Motion Seismograph ${ }^{(20)}$, Figure 82. This would probably mean that the Ormsby filter frequency should be set at a lower value, but experiments of the same nature as previously described should be conducted using an actual strong motion instrument (such an instrument was unavailable to the authors), before a lower value can be specified. Further research in this area to determine the upper range of the error frequency band will undoubtedly be necessary for earthquake-type records. One way such a record could be obtained, particularly in the low frequency range, would be to place the strong motion instrument on one end of a waterbed and vibrate the other end by hand. Figure 83 shows some acceleration records that were so obtained in an attempt to simulate earthquake records. However, these were obtained using the Piezotron Accelerometer; what is needed is the same type of record using a strong motion instrument. Coupled with a motion picture camera to record the true acceleration with a background scale, this type of research may prove profitable for future investigators.

5. Displacement Meters

Reference 20 by Trifunac and Lee describes several examples of the use of a displacement meter to check on the accuracy of the Cal. Tech. integration program. Figure 84, taken from reference 20, shows an excellent match in ground displacements obtained from both acceleration and displacement transducers. The displacement meters were long period transducers with $T_{n}=2$ to 11 seconds, recording in the same direction as the acceleration transducers.

ACCELERATION SENSITIVITY
 vs FREQUENCT

U. S. C. \& G. S. Model II Strong-Motion Seismograph

Frequency, f_{e}

FIGURE 82 FREQUENCY-RESPONSE CURVES FOR U.S.G.S. STRONG MOTION SEISMOGRAPHS

FIGURE 83 RANDOM MOTION ACCELERATION CURVE OBTAINED FROM A WATERBED VIBRATION EXPERIMENT

FIGURE 84 GROUND DISPLACEMENTS IN THE SAN FERNANDO EARTHQUAKE AT THE ENGINEERING BUILDING, SANTA ANA, CALIFORNIA (COMP. SOLE), --- FROM DISPLACEMENT METER RECORD AND - FROM ACCELEROGRAPH RECORD (AFTER REFERENCE 20)

To compute the ground displacement from either accelerograms or from displacement records, Trifunac and Lee used the same processing procedure which involved instrument correction, baseline correction, followed by double integration, and the high-pass filtering of velocity and displacement data.

From the previous discussion in this report, it is obvious the same type of record will be obtained if the program methodology itself is manufacturing its own type of displacement record based on error band frequencies. However, this does not guarantee that the displacements are the true displacements. To verify this statement the final random motion displacement record was inserted for integration in the Cal. Tech. program with the identical processing as for acceleration data. In order to obtain the same scale of displacement record, because of "integration attenuation", the displacement record was first multiplied by $2.34^{2} \pi^{2}=$ 54.042 (the displacement frequency being approximately 1.17 Hz). Figure 85 shows the integration results, which shows the introduction of a long period in the displacement record. Since the input displacement was already filtered at 1 Hz , the long period, although it is not as high an amplitude as for Figure 77, had to be created by the original program methodology.

CONCLUSIONS

1. Figure 86 shows the integrated velocity and displacement of the $N 76^{\circ} \mathrm{W}$ Pacoima Dam record in the Cal. Tech. version of PHASE2 via the Electrak digitization, while Figure 87 shows the same integrated record via the Benson-Lehner digitization. In concert with Figure 3 it appears that the Electrak DataTablet Digitizer will match reproducible results with the 800 line/inch resolution of Ca1. Tech.'s Benson-Lehner machine, while the 200 line/inch resolution Benson-Lehner machine at the Watershed Research Station will not. For efficiency of operation the authors prefer the Electrak machine.
2. Optical scanning is not recommended as a digitizing procedure for strong motion records. The procedure is too costly and when peaks and valleys in the record are at close spacing, the accuracy is much reduced.
3. Digitizing by hand using a Microfische Film Reader with a contact printing screen bacground grid is an accurate method of digitization when a commercial machine is unavailable. Although this method is tedious and time consuming, the accuracy of this method of digitization can match that of the Electrak machine. A free swing record was redigitized via the microfische method and integrated giving identical results to Figure 74.
4. The Cal. Tech. program will give true time-displacement historịes under certain conditions. These are:
A. The true velocity at the beginning and end of the record is zero.
B. The true displacement at the beginning and end of the record is zero.

C. The Ormsby filter frequency is increased from $\frac{1}{16} \mathrm{~Hz}$ to a value above the highest error frequency, but below the lowest frequency of interest in the record. If these two frequencies are too close to each other, the program cannot guarantee a true time-displacement history. The integration methodology using the process of leastsquaring, Holoway, and Ormsby filtering produces errors. From the experiments conducted in this investigation using a Piezotron Accelerometer it appears that the error frequency may be extended to 0.5 Hz . Further investigations may be necessary with strong motion instruments and simulated earthquake displacements measured independently from the earthquake source to refine the change in Ormsby frequency.
D. Verification of the accuracy of the integration program for an accelerogram cannot be done with a displacement meter record processed through the same computer program.

APPENDIX A

Least Squares Theory for Integration Program

1.1 Introduction

One common assumption in digitizing any record is that a linear variation exists between the digitized points. If the record is an acceleration record, then the integrated velocity between points varies as a parabola, and the integrated displacement between points varies as a cubic equation. Corrections to the acceleration record are usually made as a polynomial of varying degree with constant coefficients -- the most common being the straight line or parabolic corrections. The constants are evaluated by a minimization procedure, so that the root mean square value of the corrected velocity is a minimum.
1.2 Parabolic Line Correction - Boyce's Program, New Zealand

To an acceleration term corresponding to a time t_{i} a parabolic line correction takes the form of:

$$
C_{0}+C_{1} t_{i}+C_{2} t_{i}^{2}
$$

$$
\text { Let } a=C_{0} \quad 2 b=C_{1} \quad 3 c=C_{2}
$$

Then the correction becomes:

$$
a+2 b t_{i}+3 c t_{i}^{2}
$$

The values of a, b and c will be chosen such that the root mean square value of the corrected velocity is a minimum. Writing uncorrected acceleration and velocity terms as A_{u} and V_{u} respectively and corrected terms as A_{c} and V_{c} we have:

$$
\begin{aligned}
V_{c} & =V_{0}+\int_{0}^{T} A_{u} d t+a t+b t^{2}+c t^{3} \\
& =\dot{v}_{0}+V_{u}+a t+b t^{2}+c t^{3}
\end{aligned}
$$

We wish to minimize $\int_{0}^{T} V_{c}{ }^{2} \mathrm{dt}$ where T is the total record time in seconds; therefore, we must solve the following simultaneous equations:

$$
\begin{array}{ll}
\int_{\delta}^{T} V_{c} \frac{\delta V_{c}}{\delta V_{0}} d t=0 & \text { where } \frac{\delta V_{c}}{\delta V_{0}}=1 \\
\int_{0}^{T} V_{c} \frac{\delta V_{c}}{\delta a} d t=0 & \text { where } \frac{\delta V_{c}}{\delta a}=t \\
\int_{0}^{T} V_{c} \frac{\delta V_{c}}{\delta b} d t=0 & \text { where } \frac{\delta V_{c}}{\delta b}=t^{2} \\
\int_{0}^{T} V_{c} \frac{\delta V_{c}}{\delta c} d t=0 & \text { where } \frac{\delta V_{c}}{\delta c}=t^{3}
\end{array}
$$

These four equations give:

$$
\begin{align*}
& \mathrm{V}_{0} T+\frac{a T^{2}}{2}+\frac{b T^{3}}{3}+\frac{c T^{4}}{4}=-\int \mathrm{V}_{\mathrm{u}} \mathrm{dt}=\mathrm{W} \\
& \mathrm{~V}_{0} \mathrm{~T}^{2}+\frac{a T^{3}}{3}+\frac{b T^{4}}{4}+\frac{c T^{5}}{5}=-\int \mathrm{V}_{\mathrm{u}} \mathrm{tdt}=\mathrm{X} \\
& \mathrm{~V}_{0} \frac{T^{3}}{3}+\frac{a T^{4}}{4}+\frac{b T^{5}}{5}+\frac{c T^{6}}{6}=-\int \mathrm{V}_{u} \mathrm{t}^{2} \mathrm{dt}=\mathrm{Y} \\
& \mathrm{~V}_{0} \frac{T^{4}}{4}+\frac{a T^{5}}{5}+\frac{b T^{6}}{6}+\frac{c T^{7}}{7}=-\int \mathrm{V}_{u} t^{3} d t=\mathrm{Z} \tag{A.1}
\end{align*}
$$

If the initial velocity is made equal to zero then the first row and column is eliminated so that only the following three equations are solved for a, b, and c by Cramer's rule:

$$
\begin{align*}
& \frac{a T^{3}}{3}+\frac{b T^{4}}{4}+\frac{c T^{5}}{5}=-\int V_{u} t d t=X \\
& \frac{a T^{4}}{4}+\frac{b T^{5}}{5}+\frac{c T^{6}}{6}=-\int V_{u} t^{2} d t=Y \\
& \frac{a T^{5}}{5}+\frac{b T^{6}}{6}+\frac{c T^{7}}{7}=-\int V_{u} t^{3} d t=Z \tag{A.2}
\end{align*}
$$

Denominator expansion -- expanded by top row:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a & b & c \\
\frac{T^{3}}{3} & \frac{T^{4}}{4} & \frac{T^{5}}{5} \\
\frac{T^{4}}{4} & \frac{T^{5}}{5} & \frac{T^{6}}{6} \\
\frac{T^{5}}{5} & \frac{T^{6}}{6} & \frac{T^{7}}{7}
\end{array}\right| \\
& =\frac{T^{3}}{3}\left[T^{12}\right]\left(\frac{1}{35}-\frac{1}{36}\right) \\
& =T^{15}[.0002645503-.0005952381+.0003333333] \\
& =.0000026455 T^{15}
\end{aligned}
$$

Numerator expansion for a -- expanded by left column:

$$
\begin{aligned}
& \quad\left|\begin{array}{ccc}
X & \frac{T^{4}}{4} & \frac{T^{5}}{5} \\
Y & \frac{T^{5}}{5} & \frac{T^{6}}{6} \\
Z & \frac{T^{6}}{6} & \frac{T^{7}}{7}
\end{array}\right| \\
& =X\left[T^{12}\right]\left(\frac{1}{35}-\frac{1}{36}\right)-Y\left[T^{11}\right]\left(\frac{1}{28}-\frac{1}{30}\right)+Z\left[T^{10}\right]\left(\frac{1}{24}-\frac{1}{25}\right) \\
& =.0007936508 T^{12} X-.0023809524 T^{11} Y+.0016666667 T^{10} Z
\end{aligned}
$$

Dividing through by the denominator and substituting for X, Y, and Z we get:

$$
\begin{align*}
C_{0}=a= & -300 \int_{0}^{T} \frac{V_{u}(t) t d t}{T^{3}}+900 \int_{0}^{T} \frac{V_{u}(t) t^{2} d t}{T^{4}} \\
& -630 \int_{0}^{T} \frac{V_{u}(t) t^{3} d t}{T^{5}} \tag{A.3}
\end{align*}
$$

Numerator expansion for b-- expanded by middle column:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\frac{T^{3}}{3} & X & \frac{T^{5}}{5} \\
\frac{T^{4}}{4} & Y & \frac{T^{6}}{6} \\
\frac{T^{5}}{5} & Z & \frac{T^{7}}{7}
\end{array}\right| \\
& =-X\left[T^{11}\right]\left(\frac{1}{28}-\frac{1}{30}\right)+Y\left[T^{10}\right]\left(\frac{1}{21}-\frac{1}{25}\right)-Z\left[T^{9}\right]\left(\frac{1}{18}-\frac{1}{20}\right) \\
& =-.002308924 T^{11} X+.0076190476 T^{10} Y-.0055555556 \mathrm{~T}^{9} Z
\end{aligned}
$$

Dividing through by the denominator and substituting for X, Y, and Z we get:

$$
\begin{align*}
& b= 900 \int_{0}^{T} \frac{V_{u}(t) t d t}{T^{4}}-2880 \int_{0}^{T} \frac{V_{u}(t) t^{2} d t}{T^{5}}-2100 \int_{0}^{T} \frac{V_{u}(t) t^{3} d t}{T^{6}} \\
& \text { or } \\
& C_{1}=2 b= 1800 \int_{0}^{T} \frac{V_{u}(t) t d t}{T^{4}}-5760 \int_{0}^{T} \frac{V_{u}(t) t^{2} d t}{T^{5}} \tag{A.4}\\
&+4200 \int_{0}^{T} \frac{V_{u}(t) t^{3} d t}{T^{6}}
\end{align*}
$$

Numerator expansion for c -- expanded by right column:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\frac{T^{3}}{3} & \frac{T^{4}}{4} & X \\
\frac{T^{4}}{4} & \frac{T^{5}}{5} & Y \\
\frac{T^{5}}{5} & \frac{T^{6}}{6} & Z
\end{array}\right| \\
& =X\left[T^{10}\right]\left(\frac{1}{24}-\frac{1}{25}\right)-Y\left[T^{9}\right]\left(\frac{1}{18}-\frac{1}{20}\right)+Z\left[T^{8}\right]\left(\frac{1}{15}-\frac{1}{16}\right) \\
& =.0016666667 T^{10} X-.005555556 T^{9} Y+.0041666666 T^{8} Z
\end{aligned}
$$

Dividing through by the denominator and substituting for X, Y, and Z we get:
$c=-630 \int_{0}^{T} \frac{V_{u}(t) t d t}{T^{5}}-2100 \int_{0}^{T} \frac{V_{u}(t) t^{2} d t}{T^{6}}-1575 \int_{0}^{T} \frac{V_{u}(t) t^{3} d t}{T^{7}}$
or

$$
\begin{align*}
C_{2}=3 c= & -1890 \int_{0}^{T} \frac{V_{u}(t) t d t}{T^{5}}+6300 \int_{0}^{T} \frac{V_{u}(t) t^{2} d t}{T^{6}} \\
& -4725 \int_{0}^{T} \frac{V_{u}(t) t^{3} d t}{T^{7}} \tag{A.5}
\end{align*}
$$

Equations (A.3), (A.4), and (A.5) are used in Boyce's Program for the leastsquare procedure when the initial velocity is considered to be zero. When $\mathrm{V}_{0} \neq 0$, then the evaluation of equation (A.1) results in the following solution:

$$
\begin{align*}
V_{0}= & 16 \int_{0}^{T} \frac{V_{u} d t}{T}-120 \int_{0}^{T} \frac{V_{u} t d t}{T^{2}}+240 \int_{0}^{T} \frac{V_{u} t^{2} d t}{T^{3}}+140 \int_{0}^{T} \frac{V_{u} t^{3} d t}{T^{4}} \\
C_{0}= & -120 \int_{0}^{T} \frac{V_{u} d t}{T^{2}}+1200 \int_{0}^{T} \frac{V_{u} t d t}{T^{3}}-2700 \int_{0}^{T} \frac{V_{u} t^{2} d t}{T^{4}} \\
& +1680 \int_{0}^{T} \frac{V_{u} t^{3} d t}{T^{5}} \\
C_{1}= & 480 \int_{0}^{T} \frac{V_{u} d t}{T^{3}}-5400 \int_{0}^{T} \frac{V_{u} t d t}{T^{4}}+12960 \int_{0}^{T} \frac{V_{u} t^{2} d t}{T^{5}} \\
& -8400 \int_{0}^{T} \frac{V_{u} t^{3} d t}{T^{6}} \tag{A.8}\\
C_{2}= & -420 \int_{0}^{T} \frac{V_{u} d t}{T^{4}}+5040 \int_{0}^{T} \frac{V_{u} t d t}{T^{5}}-12600 \int_{0}^{T} \frac{V_{u} t^{2} d t}{T^{6}} \\
& +8400 \int_{0}^{T} \frac{V_{u} t^{3} d t}{T^{7}} \tag{A.9}
\end{align*}
$$

Equations (A.6) through (A.9) are used in Boyce's Program.

1.3 Evaluation of Integrals - Boyce's Program

$$
\text { Simpson's Rule }{ }^{(21)} \text { is a well-known quadratic }
$$

formula for the evaluation of an area under a curve by numerical analysis, provided the abscissa of the curve is divided into an even number of lengths (Figure A-1), denoted by h.

FIGURE A-1 INTERVALS FOR SIMPSON'S RULE

The area is evaluated by considering pairs of intervals:

$$
\begin{aligned}
& \int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& \int_{x_{2}}^{x_{4}} f(x) d x=\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& \int_{x_{4}}^{x_{6}} f(x) d x=\frac{h}{3}\left[f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right]
\end{aligned}
$$

etc.
For unequally spaced digitized time data, it is necessary to divide each time increment into two equal divisions and consider $h=\operatorname{time}(i+1)$ - time (i). The least square integral equations then become:

$$
\begin{aligned}
\int_{0}^{T} V_{u} t d t= & \sum \frac{t_{i+1}-t_{i}}{2(3)}\left[v_{i} t_{i}+4 v_{i+\frac{1}{2}}\left(\frac{t_{i}+t_{i+1}}{2}\right)\right. \\
& \left.+v_{i+1} t_{i+1}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\sum \frac{t_{i+1}-t_{i}}{6}\left[v_{i} t_{i}+2 v_{i+\frac{1}{2}}\left(t_{i}+t_{i+1}\right)+v_{i+1} t_{i+1}\right] \tag{A.10}\\
& \int_{0}^{T} v_{u} t^{2} d t=\sum \frac{t_{i+1}-t_{i}}{2(3)}\left[v_{i} t_{i}{ }^{2}+4 v_{i+\frac{1}{2}}\left(\frac{t_{i}+t_{i+1}}{2}\right)^{2}\right. \\
& \left.+v_{i+1}{ }_{i+1}{ }^{2}\right] \\
& =\sum \frac{t_{i+1}-t_{i}}{6}\left[v_{i} t_{i}{ }^{2}+v_{i+\frac{1}{2}}\left(t_{i}+t_{i+1}\right)^{2}+v_{i+1} t_{i+1}{ }^{2}\right] \tag{A.11}\\
& \int_{0}^{T} v_{u} t^{3} d t=\sum \frac{t_{i+1}-t_{i}}{2(3)}\left[v_{i} t_{i}{ }^{3}+v_{i+\frac{1}{2}}\left(\frac{t_{i}+t_{i+1}}{2}\right)^{3}\right. \\
& \left.+v_{i+1}{ }_{i+1}{ }^{3}\right] \\
& =\sum \frac{t_{i+1}-t_{i}}{6}\left[v_{i} t_{i}{ }^{3}+\frac{1}{2} v_{i}+\frac{1}{2}\left(t_{i}+t_{i+1}\right)^{3}+v_{i+1} t_{i+1}{ }^{3}\right] \tag{A.12}
\end{align*}
$$

Equations (A.10) through (A.12) are evaluated in Boyce's Program.
1.4 Straight Line Correction - Trifunac's Program (Cal. Tech.)

To an acceleration term we apply a correction of the form

$$
A_{c}=A_{u}-C_{0}-C_{1} t_{i}
$$

where A_{c} is the corrected acceleration and A_{u} the uncorrected acceleration. We now wish to minimize $\int_{0}^{T} A_{c}{ }^{2} d t$ where T is the record length; thus:

$$
\int_{0}^{T} A_{c} \frac{\delta A_{c}}{\delta C_{0}} d t=0 \quad \text { and } \quad \int_{0}^{T} \quad A_{c} \frac{\delta A_{c}}{\delta C_{1}} d t=0
$$

These two conditions give:

$$
\begin{aligned}
& C_{0} T+C_{1} \frac{T^{2}}{2}=+\int A_{u} d t=A_{1} \\
& C_{0} \frac{T^{2}}{2}+C_{1} \frac{T^{3}}{3}=+\int A_{u} t d t=A_{2}
\end{aligned}
$$

We solve for the constants C_{0} and C_{1} by Kramer's Rule. The denominator becomes:

$$
\left|\begin{array}{cc}
T & \frac{T^{2}}{2} \\
\frac{T^{2}}{2} & \frac{T^{3}}{3}
\end{array}\right|=\frac{T^{4}}{3}-\frac{T^{4}}{4}=\frac{T^{4}}{12}
$$

The numerator becomes for C_{0}

$$
\left|\begin{array}{cc}
A_{1} & \frac{T^{2}}{2} \\
A_{2} & \frac{T^{3}}{3}
\end{array}\right|=A_{1} \frac{T^{3}}{3}-A_{2} \frac{T^{2}}{2}
$$

The numerator becomes for C_{1}

$$
\left|\begin{array}{cc}
T & A_{1} \\
\frac{T^{2}}{2} & A_{2}
\end{array}\right|=A_{2} T-A_{1} \frac{T^{2}}{2}
$$

Therefore:

$$
\begin{align*}
& C_{0}=\frac{A_{1} \frac{T^{3}}{3}-A_{2} \frac{T^{2}}{2}}{\frac{T}{12}}=\frac{\frac{4}{3} A_{1} T^{3}-2 A_{2} T^{2}}{\frac{T^{4}}{3}} \tag{A.13}\\
& C_{1}=\frac{A_{2} T-A_{1} \frac{T^{2}}{2}}{\frac{T^{4}}{12}}=\frac{4 A_{2} T-2 A_{1} T^{2}}{T^{4}} \tag{A.14}
\end{align*}
$$

A_{1} is the area under the acceleration-time curve (Figure A-2), or the velocity curve.

FIGURE A-2 ACCELERATION-TIME CURVE FOR NUMERICAL INTEGRATION

Suppose that the acceleration varies linearly between time stations. The acceleration between time t_{i} and t_{i+1} would then be approximated by:

$$
\begin{equation*}
A_{u}=A_{u(i)}+\frac{A_{u(i+1)}-A_{u(i)}}{t_{i+1}-t_{i}}\left(t-t_{i}\right) \tag{A.15}
\end{equation*}
$$

The velocity at any time within the same time interval may be obtained by:

$$
v_{u}=v_{u(i)}+\int_{t_{i}}^{t} A_{u} d t
$$

or

$$
v_{u}=v_{u(i)}+A_{u(i)}\left(t-t_{i}\right)+\frac{A_{u(i+1)}-A_{i(i)}}{2\left(t_{i+1}-t_{i}\right)}\left(t-t_{i}\right)^{2}
$$

which at station $i+1$ becomes:

$$
\begin{equation*}
v_{u(i+1)}=v_{u(i)}+\frac{\left(t_{i+1}-t_{i}\right)}{2}\left(A_{u(i+1)}+A_{u(i)}\right) \tag{A.16}
\end{equation*}
$$

See line LES 031 Appendix D

The displacement at $t+1$ is given by:

$$
\begin{align*}
x_{i+1} & =x_{i}+\int_{t_{i}}^{t_{i+1}} v_{u} d t \\
& =x_{i}+v_{u(i)}\left(t_{i+1}-t_{i}\right)+\frac{\left(t_{i+1}-t_{i}\right)^{2}}{6}\left(2 A_{u(i)}+A_{u(i+1)}\right) \tag{A.17}
\end{align*}
$$

See line LES 030 Appendix D
A_{2} may be evaluated within the same time interval as:

$$
\begin{align*}
A_{2(i+1)}= & A_{2(i)}+\int_{t_{i}}^{t} A_{u} t d t \\
= & A_{2(i)}+\frac{A_{u(i)}}{2}\left(t_{i+1}{ }^{2}-t_{i}{ }^{2}\right) \\
& +\frac{A_{u(i+1)}}{3\left(t_{i+1}-A_{u(i)}\right)}\left(t_{i+1}{ }^{3}-t_{i}{ }^{3}\right) \\
& \frac{-A_{u(i+1)}+A_{u(i)}}{2\left(t_{i+1}-t_{i}\right)} t_{i}\left(t_{i+1}{ }^{2}-t_{i}{ }^{2}\right) \tag{A.18}
\end{align*}
$$

However the Cal. Tech. program uses a simpler formula, which may be obtained by dropping the straight line approximation to the variation of acceleration and integrating $\int A_{u}(t) t d t$ over the entire length of the record by parts as an exact integral.

$$
\begin{aligned}
& \text { Let } u=t, d u=d t, d v=A_{u}(t) d t \text { and } \\
& \int d v=v=\int A_{u}(t) d t=v(t)
\end{aligned}
$$

Then using the method of parts:

$$
\begin{align*}
\int_{0}^{t} A_{u}(t) t d t= & t \times V(t)]_{0}^{T}-\int_{0}^{T} V(t) d t \\
= & T \times V(T)-0-\text { Final Displacement } \\
= & \text { Final velocity } \times \text { Record Length (Time) } \\
& - \text { Final Displacement } \tag{A.19}
\end{align*}
$$

See line LES 43 Appendix D

Numerical calculations using equations (A.18) or (A.19) give the same results to three decimal places.

APPENDIX B

Filter Mathematics

Figure $B-1$ shows a desired response chart in a frequency domain from $-\omega_{T}$ to t ω_{T}.

FIGURE B-1 RESPONSE CHART

It is desired to maintain a $1: 1$ ratio of input data to output data in the frequency range of $-\omega_{c}$ to ${ }^{+} \omega_{c}$. Let us therefore define a response function between - ∞ and $+\infty$ to be as follows:
where ω_{c} is the cut-off frequency.

The value of P determines the shape of the drop-off portions of the curve. If $P=1$ the shape is a straight line, which the Ca1. Tech. program assumes. For mathematics sake the folding frequency is taken as zero -- frequencies below zero are fictitious. The weight function $h(t)$ associated with $H(\omega)$ is given by:

$$
\begin{equation*}
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} H(\omega) d \omega \tag{B.2}
\end{equation*}
$$

Noting that the integral can be broken into five distinct parts with appropriate limits,
$h(t)=\frac{1}{2 \pi} \int_{-\infty}^{-\omega_{T}} e^{i \omega t}(0) d \omega$

$$
+\frac{1}{2 \pi} \int_{-\omega_{T}}^{-\omega_{c}} e^{i \omega t}\left(\frac{1}{\omega_{T}-\omega_{c}}\right)^{P}\left(\omega_{T}+\omega\right)^{P} d \omega
$$

$$
+\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{i \omega t} \text { (1)d } \omega
$$

$$
+\frac{1}{2 \pi} \int_{\omega_{c}}^{\omega_{T}} e^{i \omega t}\left(\frac{1}{\omega_{T}-\omega_{c}}\right)^{P}\left(\omega_{T}-\omega\right)^{P} d \omega
$$

$$
\begin{equation*}
+\frac{1}{2 \pi} \int_{\omega_{T}}^{\infty} e^{i \omega t}(0) d \omega \tag{B.3}
\end{equation*}
$$

the first and last term have zero factors, thus leaving only the second, third, and forth term to be integrated by parts.

Noting that $e^{i \omega t}=\cos \omega t+i \sin \omega t$ and letting $P=1$, we evaluate the following equation term by term:

$$
\begin{align*}
h(t) & =\frac{1}{2 \pi} \int_{-\omega_{T}}^{-\omega_{C}} e^{i \omega t}\left(\frac{\omega_{T}+\omega_{T}}{\omega_{T}-\omega_{C}}\right) d \omega+\frac{1}{2 \pi} \int_{-\omega_{C}}^{\omega_{C}} e^{i \omega t} d \omega \\
& +\frac{1}{2 \pi} \int_{\omega_{C}}^{\omega_{T}} e^{i \omega t}\left(\frac{\omega_{T}-\omega}{\omega_{T}-\omega_{C}}\right) d \omega \tag{B.4}
\end{align*}
$$

Now:

$$
\begin{aligned}
& \int_{-\omega_{T}}^{-\omega_{c}} e^{i \omega t}\left(\omega+\omega_{T}\right) d \omega=\int_{-\omega_{T}}^{-\omega_{c}}(\cos \omega t+i \sin \omega t)\left(\omega+\omega_{T}\right) d \omega \\
& =\int \omega \cos \omega t d \omega+\int \omega_{T} \cos \omega t d \omega+\int i \omega \sin \omega t d \omega \\
& \quad+\int i \omega_{T} \sin \omega t d \omega
\end{aligned}
$$

where, using the method of parts

$$
\begin{align*}
\int \omega \cos \omega t d \omega & =\left[\frac{\omega \sin \omega t}{t}\right]-\frac{1}{t} \int \sin \omega t d \omega \\
& =\frac{\omega_{C} \sin \omega_{C} t}{t}-\frac{\omega_{T} \sin \omega_{T} t}{t}+\frac{\cos \omega_{C} t}{t^{2}} \\
& -\frac{\cos \omega_{T} t}{t^{2}} \tag{B.5}\\
\int i \omega \sin \omega t d \omega & =\left[-\frac{i}{t} \omega \cos \omega t\right]+\frac{i}{t} \int \cos \omega t d \omega \\
& =\frac{i}{t} \omega_{C} \cos \omega_{C} t-\frac{i}{t} \omega_{T} \cos \omega t-\frac{i}{t^{2}} \sin \omega_{C} t \\
& +\frac{i}{t^{2}} \sin \omega_{T} t \tag{B.6}
\end{align*}
$$

and

$$
\begin{align*}
\int \omega_{T} \cos \omega t d \omega & =\omega_{T} \sin \frac{\omega t}{t}=-\frac{\omega_{T} \sin \omega_{C} t}{t}+\frac{\omega_{T} \sin \omega_{T} t}{t} \tag{B.7}\\
\int i \omega_{T} \sin \omega t d \omega & =-i \omega \frac{\cos \omega t}{t}=-\frac{i \omega_{T} \cos \omega_{C} t}{t} \\
& +\frac{i \omega_{T} \cos \omega_{T} t}{t} \tag{B.8}
\end{align*}
$$

Also:

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}}(\cos \omega t+i \sin \omega t) d \omega \\
=\left[\frac{1}{2 \pi} \frac{\sin \omega t}{t}\right]-\left[\frac{i \cos }{2 \pi} \frac{\omega t}{t}\right]
\end{gathered}
$$

Where:

$$
\begin{equation*}
\left[\frac{i \cos \omega t}{2 \pi t}\right]{ }_{-\omega_{c}}^{\omega_{c}}=0 \text { and }\left[\frac{\sin \omega t}{2 \pi t}\right]{ }_{-\omega_{c}}^{\omega_{c}}=\frac{\sin \omega_{c} t}{\pi t} \tag{B.9}
\end{equation*}
$$

Finally:

$$
\begin{aligned}
& \int_{\omega_{C}}^{\omega_{T}} e^{i \omega t}(\omega-\omega) d \omega=\int_{\omega_{C}}^{\omega_{T}} \quad(\cos \omega t+i \sin \omega t)\left(\omega_{T}-\omega\right) d \omega \\
&=\int \omega_{T} \cos \omega t d \omega=\int \omega \cos \omega t d \omega+\int i \omega_{T} \sin \omega t d \omega \\
&-\int i \omega \sin \omega t d \omega
\end{aligned}
$$

where, using the method of parts:

$$
\int \omega \cos \omega t d \omega=-\frac{\omega \sin \omega t}{t}+\frac{1}{t} \int \sin \omega t d \omega
$$

$$
\begin{align*}
= & -\frac{\omega_{T} \sin \omega_{T}{ }^{t}}{t}+\frac{\omega_{c} \sin \omega_{C} t}{t}-\frac{\cos \omega_{T} t}{t^{2}} \\
& +\frac{\cos \omega_{c} t}{t^{2}} \tag{B.10}
\end{align*}
$$

$-\int i \omega \sin \omega t d \omega=\frac{i}{t} \omega \cos \omega t-\frac{i}{t} \int \cos \omega t d \omega$

$$
=\frac{i}{t} \omega_{T} \cos \omega t-\frac{i}{t} \omega_{C} \cos \omega_{C} t-\frac{i}{t^{2}} \sin \omega_{T} t
$$

$$
\begin{equation*}
+\frac{i}{t^{2}} \sin \omega_{c} t \tag{B.11}
\end{equation*}
$$

and

$$
\begin{align*}
\int \omega_{T} \cos \omega t d \omega= & \omega_{T} \frac{\sin \omega t}{t}=\frac{\omega_{T} \sin \omega t}{t}-\frac{\omega_{T} \sin \omega_{c} t}{t} \tag{B.12}\\
\int i \omega_{T} \sin \omega t d \omega= & -i \omega_{T} \cos \frac{\omega t}{t}=-\frac{i \omega_{T} \cos \omega_{T} t}{t} \\
& +\frac{i \omega_{T} \cos \omega_{c} t}{t} \tag{B.13}
\end{align*}
$$

Equation (B.6) cancels Equation (B.11)
Equation (B.8) cancels Equation (B.13)
Substitution of equations (B.5), (B.7), (B.9), (B.10), and (B.12) into equation (B.5) gives:

$$
\begin{align*}
h(t)= & \frac{1}{2 \pi\left(\omega_{T}-\omega_{c}\right)}\left[2 \cos \frac{\omega_{C} t}{t^{2}}-2 \cos \frac{\omega_{T} t}{t^{2}}\right. \\
& \left.-\frac{2 \sin \omega_{c} t}{t}\left(\omega_{T}-\omega_{c}\right)\right]+\frac{\sin \omega_{C} t}{\pi t} \\
= & \frac{\cos \omega_{C} t-\cos \omega_{T} t}{\pi\left(\omega_{T}-\omega_{C}\right) t^{2}} \tag{B.14}
\end{align*}
$$

The filter weights $h(t)$ must be evaluated for equally spaced times. For use in the computer, we normalize the rolloff and cut-off frequencies (ω_{T} and ω_{c}) by denoting the variables $\lambda=\omega / \omega_{s}, \omega_{c}=2 \pi f_{c}, \omega_{T}=2 \pi f_{t}, \lambda_{c}=\omega_{c} / \omega_{s}$, and $\lambda_{r}=\left(\omega_{T}-\omega_{C}\right) / \omega_{S}$; where ω_{S} is the effective sampling angular frequency.
(note: $\quad \Delta t=\frac{1}{f_{s}}=\frac{2 \pi}{\omega_{s}} \quad \omega_{s}=\frac{2 \pi}{\Delta t}$

Assuming $h(t)$ real, $H(w)$ turns out to be an even function; thus $h_{n}=h-n$ and only $n+1$ weights need be calculated. The following digitized non-dimensional formula results:

$$
h_{n}=\frac{\cos 2 \pi n \lambda_{c}-\cos 2 \pi n \lambda_{t}}{2 \lambda_{r}(\pi n)^{2}} \quad 1 \begin{aligned}
n & =0, \pm 1, \pm 2, \ldots N \\
\lambda_{t} & =\lambda_{c}+\lambda_{r}
\end{aligned}
$$

The formula is evaluated by the Ormsby subroutine. A special form of this equation needs to be evaluated for $\mathrm{n}=0$, when the formula becomes indeterminate using De l' Hospital's rule.

$$
h_{n}=\frac{\cos \left(2 \pi n \lambda_{c}\right)-\cos \left(2 \pi n \lambda_{t}\right)}{2 \lambda_{r}(\pi n)^{2}}
$$

Let

$$
\begin{aligned}
& h_{n}=\frac{g(n)}{f(n)} \\
& \frac{\delta(g(n))}{\delta(f(n))}=-\frac{2 \pi \lambda_{c} \sin \left(2 \pi n \lambda_{c}\right)+2 \pi \lambda_{t} \sin \left(2 \pi n \lambda_{t}\right)}{4 \lambda_{r} \pi^{2} n} \\
& \text { For } n=0, \quad h_{n}=\infty
\end{aligned}
$$

Therefore use De l^{\prime} Hospital's Rule again.

$$
\begin{aligned}
& \begin{aligned}
& \frac{\delta^{2}(\mathrm{~g}(\mathrm{n}))}{\delta^{2}(\mathrm{f}(\mathrm{n}))}=-\frac{4 \pi^{2} \lambda_{c}^{2} \cos \left(2 \pi n \lambda_{c}\right)+4 \pi^{2} \lambda_{t}{ }^{2} \cos \left(2 \pi n \lambda_{t}\right)}{4 \lambda_{r} \pi^{2}} \\
&=\frac{\lambda_{t}^{2} \cos \left(2 \pi n \lambda_{t}\right)-\lambda_{c}^{2} \cos \left(2 \pi n \lambda_{c}\right)}{\lambda_{r}} \\
& \text { For } n=0, \quad \frac{\lambda_{t}^{2}-\lambda_{c}^{2}}{\lambda_{r}}=\frac{\left(\lambda_{t}-\lambda_{c}\right)\left(\lambda_{t}+\lambda_{c}\right)}{\lambda_{r}} \\
& \text { But } \lambda_{r}=\frac{\omega_{T}-\omega_{c}}{\omega_{s}}=\frac{\left(\frac{\omega_{T}-\omega_{c}}{\omega_{s}}\right)}{\left(\lambda_{t}+\lambda_{c}\right)}=\lambda_{t}+\lambda_{c}
\end{aligned}
\end{aligned}
$$

The quantity $\lambda_{T}=\left(\omega_{T}-\omega_{C}\right) / \omega_{S}$ which specifies the sharpness of roll-off after λ_{c} together with the number of weights N
measures the resultant accuracy of $H(\lambda)$ with reduced accuracy for lower λ_{r} and/or lower N.

To provide a means for quickly determining the minimum N to choose for a decimal accuracy and sharpness of roll-off, a series of response runs were made by Ormsby () covering a range of λ_{c} from 0 to $0.4, \lambda_{r}$ from 0.005 to 0.1 and N from 10 to 100. Figure B-2 shows the filter frequency response from his publication, for which he derived the following formula:

FIGURE B-2 FILTER FREQUENCY RESPONSE

$$
\lambda_{r} N=\frac{0.012}{\varepsilon}
$$

where ε is the tolerable error. Trifunac uses $\varepsilon=0.012$, so that in effect

$$
N=\frac{1}{\lambda_{r}}
$$

in equation ($B-15$).

APPENDIX C

USER'S INSTRUCTIONS - PROGRAM DIASMA

1.1 PHASEI

The function of the PHASEl subroutine is essentially that of taking raw digitized accelerogram data and converting it to data that can be used for subsequent integration and filtering. All the coordinate data (input and output) appears as two numbers which represent the time and acceleration values of an earthquake record. These digitized coordinates can be input via a 7 or 9 -track magnetic tape or IBM computer cards. However, the title card and main control cards must be in punched card form. The output from PHASEl is given as either a coordinate plot, a listing, or a punched deck of computer cards representing the desired output data.

On the output data deck, coordinate points are punched on 20 columns, with a maximum of four points per card. Each 20 columns are punched in the FORMAT 2F10.3, where the first 10 columns represent the time coordinate, and the second 10 columns represent the acceleration coordinate.

To utilize subroutine PHASE1, the following cards are required:

First Card:
Reduction factors for Calcomp Plotter. FORMAT (3F10.3) XRED, YRED, DACCEL

This information is for limiting the final dimensions of the plot to any convenient size. For example, if XRED $=0.5$ the plot is reduced to $1 / 2$ normal size. If XRED $=2$, the plot is doubled its normal size for the Time coordinate. YRED is the proportional size
change for the acceleration, velocity, or displacement coordinate. See page C-6 for DACCEL.

Second Card:

Determines the use of the program for digitization or integration,

FORMAT (2I5,4F10.6) NPHASE, NCORR, A, B, C, D
Column 5
NPHASE = 1 Use will be for digitization.
$=2$ Use will be for integration.
Column 10
NCORR $=0 \quad$ Baseline corrected data will be prepared from corrected raw data.
$=1$ Raw data will be plotted to scale of original accelerogram.

Columns 11-20
A $\quad=\quad$ Time scaling factor for PLOTTR sub-

Columns 21-30
B = Initial raw Time data to scale of A. Columns 31-40

C $\quad=\quad$ Acceleration scaling factor for PLOTTR subroutine.

Columns 41-50
D =
Initial raw acceleration data to scale of C.

Third Card:
Title of accelerogram data
FORMAT (8A10)
Up to eighty characters can be used. Usually this card gives the location of the accelerograph and the component being digitized.

Fourth Card:

Main Control Card
FORMAT (3I5,4F10.0) NPLOT, NPUNCH, INPUTP, SIZE, XLEN, SCALET, SCALEA

Column 5
NPLOT $=0$ No plot is output.
$=1$ Input digitized data will be plotted.
$=2$ Baseline corrected and scaled data will be plotted.
(Note: Any number other than 1 or 2 will be interpreted as a zero, i.e., no plot.)
Column 10
NPUNCH $=0$ No cards will be punched.
$=1$ Input digitized data will be punched on cards.
$=2$ Baseline corrected and scaled data will be punched on cards.
(Note: Any number other than 1 or 2 will be interpreted as a zero, i.e., no punch.)

Column 15
INPUTP = 1 Digitized coordinate values representing time and acceleration will be input via punched cards.
$=2$ Digitized coordinate values will be input via magnetic tape.
(Note: Any number other than 2 will be interpreted as a l, i.e., computer expects input data to appear on punched cards.)

Columns 16-25
SIZE = Vertical distance (in inches) from the highest peak to the lowest valley of accelerogram trace.

Columns. 26-35
XLEN $\quad=\quad$ Horizontal distance (in inches) from the first time coordinate to the final time coordinate of accelerogram trace. XLEN is limited to positive values and the physical length of the plotting paper.
(Note: No value need be intered for SIZE and XLEN if NPLOT is specified as zero.)

Columns 36-45
SCALET $=$ Time scaling factor used to convert digitized "counts" of time to any desired output units (e.g., seconds.)

Columns 46-55
SCALEA $=$ Acceleration scaling factor used to convert digitized "counts" of acceleration to any desired output units (e.g., cm/sec ${ }^{2}$ or units of gravity.)
(Note: No value need be inserted for SCALET or SCALEA if NPUNCH or NPLOT is any number other than 2. Also
if INPUTP $=2$, all subsequent data for this component must be on magnetic tape.)

Accelerogram Data Cards

The third card begins the digitized data deck (if INPUTP is specified as any number other than 2). The third and subsequent cards contain the digitized time and acceleration data.

FORMAT 4 (2F10.0) TIME (1) , ACCEL (1) , . . .
Columns 1-10.
TIME (1) = Digitized time coordinate of point 1.
Columns 11-20
ACCEL(1) $=$ Digitized acceleration coordinate of point 1 .

Columns 21-30

$$
\text { TIME (2) }=\quad \text { Digitized time coordinate of point } 2 .
$$

Columns 31-40

$$
\begin{aligned}
\text { ACCEL }(2)= & \text { Digitized acceleration coordinate of } \\
& \text { point } 2 .
\end{aligned}
$$

And so forth . . .
Time and acceleration coordinate values are input in this manner; i.e., each coordinate point uses 20 columns to represent its location on the accelerogram. (Note: Four points i.e., pairs of coordinates must be digitized on each card; otherwise, blank spaces will be interpreted as zeros. The last data card may have fewer than four points.)

EOF Card:

An end-of-file card is placed after the last card containing accelerogram trace coordinates.

Fixed Trace Data Cards:

Fixed trace digitized data (if any) follows the EOF card.

FORMAT 4 (2F10.0) X(I), Y(I), . .
Digitized fixed trace data appears in the same as Accelerogram Data cards; i.e., four pairs of coordinate values per card representing the " X " and " Y " values of the fixed trace.

EOF Card:
An end-of-file card is placed after the last card containing digitized fixed trace coordinates.
(Note: The second EOF card is required even though there may be no fixed trace data cards.)

Subroutine PHASE2 does the job of processing earthquake data so that it may be acceptable for use in determining the design spectra for the earthquake. The input data appears in the same format as that of the PHASE1 program. That is, each digitized point is represented by a pair of numbers, the time and acceleration coordinates. The input data may be unscaled with no baseline correction or fixed trace correction. These operations can be performed in PHASE2. However, the subroutine has no provision for reading data from a magnetic tape. All input data must be in the form of punched cards.

The output from PHASE2 is in the form of a listing of the final filtered and integrated acceleration, velocity, and displacement, all as a function of time. The user may also elect to output a plotted graph of the final above information along with a graph of the major filter weights. No other form of output is provided.

To utilize the PHASE2 subroutine the following input cards are required:

First Card:

Reduction factors for Calcomp Plotter.
FORMAT (3F10.3) XRED, YRED
The first two items are for limiting the final dimension of the plot to any convenient size. For example, if XRED $=0.5$ the plot is reduced to $1 / 2$ normal size.

If XRED $=2$, the plot is doubled its normal size for the Time coordinate. YRED is the proportional size change for the acceleration, velocity, or displacement coordinate. DACCEL is the only non-general term in the computer listing, and was used to represent the maximum lift height of the pendulum in the experiments
described in this report. It was used to convert the measured digitized data to a zero baseline at the bottom position of the pendulum.

Second Card:

Determines the use of the program for digitization or integration.

FORMAT ($2 \mathrm{I} 5,4 \mathrm{~F} 10,6$) NPHASE, NCORR, A, B, C, D Column 5

NPHASE $=1$ Use will be for digitization. $=2$ Use will be for integration.
Column 10
NCORR $=0$ Baseline corrected data will be prepared from corrected raw data,
$=1$ Raw data will be plotted to scale of original accelerogram.
Columns 11-20
A $\quad=\quad$ Time scaling factor for PLOTTR subroutine.

Columns 21-30
B $\quad=\quad$ Initial raw Time data to scale of A.
Columns 31-40
C $\quad=\quad$ Acceleration scaling factor for PLOTTR subroutine.

Columns 41-50
D $\quad=\quad$ Initial raw acceleration data to scale of C .

Third Card:

Title of accelerogram data
FORMAT (8A10)
Up to eighty characters can be used. Usually this card gives the location of the accelerograph and the component being digitized.

C-7

Fourth Card:

Main Control Card.
FORMAT (4F10.0, I5) T, CD, SCALET, SCALEA, NPLOT, ISHORT, NEWWAY, N2WAY, N3WAY, N4WAY

Columns 1-10
T $=$ Natural period of the accelerograph transducer given in seconds.
Columns 11-20.
$C D \quad=\quad$ Critical damping coefficient of the accelerograph transducer given in percent.
(Note: This information is usually available from the seismiological station where the accelerogram was recorded, If this information is unknown and/or these first 20 columns left blank, the program will not perform an instrument correction on the data.)

Columns 21-30
SCALET = Time scaling factor used to convert input time data to seconds.

Columns 31-40
SCALEA = Acceleration scaling factor used to convert input acceleration data to units of G.
(Note: Program PHASE2 requires that the data is scaled to seconds and $\mathrm{cm} / \mathrm{sec} / \mathrm{sec}$. Scaling factors that yield other units of time and acceleration will yield erroneous output. If the data is input in units of seconds and gravity, then SCALET and SCALEA should be defined as 1.0.)

Column 45
NPLOT $=0$ No plot is output.
= 1 Final acceleration will be plotted.
$=2$ Final acceleration, velocity, and displacement will be plotted.
= 3 Final acceleration, velocity, displacement and the low-pass filter weights will be plotted.
$=4$ Only the low-pass filter weights will be plotted.
(Note: Any number other than the above will be interpreted as a zero, i.e., no plot.)
Column 50
ISHORT $=0$ Instrument correction is performed.
$=1$ No instrument correction is performed.
Column 55
NEWWAY $=0$ Cal. Tech. integration procedure is used.
= 1 Horizontal baseline correction replaces leastsquare correction procedure. Filtering procedure follows Cal. Tech. method.

Column 60
N2WAY $=0$ Cal. Tech. integration procedure is used.
$=1$ Horizontal baseline correction for acceleration and velocity. No filter procedure for velocity or displacement.

Column 65
N3WAY $=0$ Cal. Tech. integration procedure used.
= 1 Horizontal baseline correction replaces leastsquare procedure for acceleration and velocity. No filter procedure on acceleration, velocity, or displacement. HORIZ subroutine used on acceleration when data has been decimated to 0.02 sec . C-9

Filters are used for acceleration, velocity, and displacement.

Figure C-1 summarizes the above options from the Cal. Tech program by listing the various steps in each option.

Accelerogram Data Cards:

The third card begins the input data deck of the time-acceleration coordinates.

FORMAT 4(2F10.0) TIME(I), ACCEL(I), . . .
Each coordinate appears on 20 columns of a punched card with the time coordinate in the first 10 columns and the acceleration coordinate in the second 10 columns. All cards (except the last card) must contain four pairs of coordinate data. The decimal point may appear anywhere in the 10 columns or if it is omitted, it will be located after the digit in the tenth column of the coordinate.

EOF Card:
An end-of-file card is placed after the last card containing accelerogram trace coordinates.

Abstract

APPENDIX D

DIASMA Program Listing Appendix D contains a 1isting of the computer program used by the authors to process the data of this report. The listing is given for both the IBM $360 / 370$ O.S. computer and the CDC 6400 computer; together with control statements for running the program on either computer.

In the plot routine for PHASE2 decimation problems caused overruns beyond the ends of some arrays; therefore, the problem was solved by eliminating a few end points in the plot.

SUBROUTINE PHASEI(NCORR,A,B,C,D,XRED,YRED)
PH1 001
IMPLICIT REAL*4 (A-H,0-Z)
an eof Card or mark (for mag tape) signals eno of accelogram or
FIXED TRACE (F. T.) DATA. IF THERE IS NO F. T. DATA, PLACE
TWO (2) EOF CARDS (MARKS) $\triangle T$ END OF ACCELOGRAM DATA.
IF THREE (3) EOF'S $\triangle R E$ ENCOUNTERED PER COMPONENT, PROGRAM STOPS:
COMMON ACCEL(5500), TIME (5500), TITLE (20), VEL(3000), DISP(3000),LAST
C DMMON/PLTBUF/IBUF(1000)
DIMENSION X(1),Y(1)
EQUIVALENCE (X,VEL), Y Y,DISP)
PH1 002
PH1 003
PH1 004
PH1 005
PH 1006
PH1 007

PH1 009
PH1 010

PH1 013
10 READ (1,2050,END=20) TITLE
GO TO 30
20 WRITE $(3,2030)$
PH1 016
WRITE $(3,4000)$
STOP
30 WRITE $(3,2060)$ TITLE

READ (1,1050) NPLOT, NPUNCH, INPUTP,SIZE,XLEN,SCALET,SCALEA
WRITE $(3,3020)$
WRITE (3,3010) NPLOT,NPUNCH,INPUTP,SIZE,XLEN,SCALET,SCALEA
NPLOT * = O, NO PLOT IS DESIRED
= 1, DIGITIZED DATA WILL BE PLOTTED
= 2, BASELINE CORRECTED DATA WILL BE PLOTTED
NPUNCH * $=0$, NO CARDS WILL BE PUNCHED
= 1, DIGITIZED DATA WILL BE PUNCHED ON CARDS
= 2, BASELINE CORRECTED DATA WILL BE PUNCHED ON CARDS
INPUTP * = 1, DATA READ FROM PUNCHED CARDS
$=2$, DATA READ FROM MAG TAPE
SIZE = VERTICAL DISTANCE (IN INCHES) FROM HIGHEST PEAK TO LOWEST VALLEY OF RECORD FROM WHICH RAW DATA IS DIGITIZED.
SIZE MUST NOT EXCEED TEN INCHES.
$X L E N=$ LENGTH OF TIME $\triangle X I S$ (IN INCHES) FROM TIME=0 TO MAX TIME IN RECORD
XLEN SHOULD BE EOUAL TO ACTUAL RECORD LENGTH
FROM WHICH DATA IS DIGITIZED

IF (INPUTP .EQ. 1) WRITE $(3,1010)$
IF (INPUTP .FO. 2) WRITE $(3,1020)$
IF IINPUTP . NE. 2) INPUTP = 1
IF (NPLOT.EO. O) GO TO 40
IF (NPLOT. EO. 11 GO TO 40
WPITE $(3,1030)$ SIZF,XLEN
40 IF (NPUNCH .EQ. 1) WRITE (3,1070)
IF (NPUNCH .EQ. 2) WRITE $(3,1060)$
IF INPUNCH.EO. 1 .OR. NPUNCH .EQ. 2) PUNCH 2050, TITLE
READ IN time-accel data from digitized records
$N T=-1$
IF (INPUTP .EO. 1) GO TO 85
mag tape reading routine
CaLL TRK010

```
C
        REWINO }
        NT=0
    50NT=NT+1
        IF (NT.LT. 2998) GO TO 70
    60 WRITE (3,2080) TIME(2998)
    GO TO 380
    70 READ (7,2040,END=80) TIME(NT), ACCEL(NT)
    GO TO 50
    80 LAST=NT PH1 076
    GO TO 120 PH1 077
c (a)TO l2O
C PUNCHED CARD READING ROUTINE
C
    8 5 N T = N T + 1
    IF (NT.LT. 749) GO TO 100
    90 LAST = 4*NT
    WRITE (3,2070) TIME(LAST)
    STOP 1
    100 READ (1, 1000,END=110) (TIME(NT*4+I),ACCEL(NT*4+I),I=1,4)
    GO TO 85
    110LAST = 4*NT PH1 OB8
    120 CONTINUE PH1 089
        IF (ACCEL(LAST).EQ. 0.0) LAST = LAST-1
        IF (ACCEL(LAST).EO. 0.0) LAST = LAST-1
        IF (ACCEL(LAST).EO. 0.0) LAST = LAST-1
        IF (NPUNCH .EQ. 1) PUNCH 1040, (TIME(I), ACCEL(I), I=1,LAST)
        WRITE (3,1090) LAST
        WRITE (3,1040) (TIME(I), ACCEL(I), I=1,LAST)
C
C
C CHECK DATA FOR CONTINUOUSLY INCREASING TIMES
C
    OO 140 M=2,LAST
    IF (TIME(M) -TIME(M-1)) 130,140,140
    130 TIME(M)=TIME(M-1)
    140 CONTINUE
C
C READ IN FIXED TRACE DATA (IF ANY)
C
    150 NX=-1
        IF (INPUTP.EQ. 1) GO TO 180
        IF (NT.GE. 2998) GO TO 280
        CALL TRK010
C
C
        REWINO }
    NX=0
    160 NX=NX+1
    READ (7,2040) X(NX),Y(NX)
    IF (EOF(7)) 170,160
    170 NFXTRC=NX
    GO TO 200
    180 NX=NX+1
    READ (1,1000,END=190) (X(NX*4+I), Y(NX*4+I), I=1,4)
        GO TO 180
    190 NFXTRC=4*NX 年 PH1 125
    200 CONTINUE
    IF (NFXTRC .LE. 1) GO TO 2&O
    IF (Y(NFXTRC).EQ. 0.0) NFXTRC = NFXTRC - 1
        1F(Y(NFXTRC) EQ. 0.0) NFXTRC = NFXTRC - 1
    IF (Y(NFXTRC).EQ. O.O) NFXTRC = NFXTRC - 1
        IF (NPUNCH.EQ. 1) PUNCH 1040, (X(I),Y(I),I=1,NFXTRC)
    WRITE (3,2000) NFXTRC
    WRITE (3,1040) (X(I), Y(I), I=1,NFXTRC)
PH1 067
PH1 068
PH1 069
PH1 070
PH1 072
PH1 073
PH1 078
PH1 079
PH1 080
PH1 081
PH1 083
PH1 OR4
PH1 OB5
PH1 089
PH1 090
PH1 091
PH1 092
PH1 093
PH1 094
PH1 095
PH1 096
PH1 097
PH1 098
PH1 099
PH1 100
PH1 101
PH1 102
PH1 103
PH1 104
PH1 105
PH1 106
PH1 107
PH1 108
PH1 109
PH1 110
PH1 111
PH1 112
PH1 113
PH1 114
PH1 115
PH1 116
PH1 116
PH1 117
PH1 118
PH1 119
PH1 120
PH1 121
PH1 122
C
PH1 126
PH1 126
PH1 128
PH1 129
PH1 130
PH1 130
PH1 132
PH1 133
```

C
D-4

C

```
    IF (NPLOT .EQ. 1) GO TO 380 PH1 136
C PH1 137
C SMOOTH FIXEO TRACE DATA
    NFTM1 = NFXTRC-1
    DO 210 I=2,NFTM1
    210Y(I)=Y(I-1)/4.0+Y(I)/2.0+Y(I+1)/4.0
C
C DEDUCT FIX TRACE FROM ACCELEROGRAM
C
    IF (X(NFXTRC) -LT. TIME(LAST)) X(NFXTRC) = TIME(LAST)
    DO 220 J=1,LAST
    IF (TIME(J) .GT. X(1)) GO TO 230
    220 ACCEL(J)=ACCEL(J)-Y(1)
    230 JJ= J
        DO 270 I =1,NFXTRC
        OO 260 J=JJ,LAST
        IF (TIME(J).GT. X(I+1)) GO TO 270
        IF (X(I+1)-X(I)) 250,250,240
    240 ACCEL(J)=ACCEL(J)-Y(I)-(TIME(J)-X(I))*(Y(I+1)-Y(I))/(X(I+I)-X(I))
    GO TO 260
    250 ACCEL(J) = ACCEL(J)-Y(I)
    260 CONTINUE
    270 J J=J
    280 CONTINUE
    WRITE (3.2090)
    WRITE (3,1040) (TIME(I), ACCEL(I), I=1,LAST)
    IF (NCORR .EQ. 1) GO TO 380
    IF (NPUNCH .EQ. 1) GO TO 360
C
C ADJUST DATA FOR ZERD BASELINE AND BEGINNING TIME = 0.0
C
    IF (SCALET .EQ. 0.0) SCALET = 1.0
    IF (SCALEA .EO. 0.0) SCALEA = 1.0
    OO 290 I =2,LAST
    290 TIME(I)=(TIME(I)-TIME(I))*SCALET
    TIME(1)=0.0
    AREA = 0.0
    DO 300 I =2,LAST
    DT = TIME(I)-TIME(I-1)
    300 AREA = AREA+(ACCEL(I)+ACCEL(I-1))*DT/2.0
    ADJUST = AREAITIME(LAST)
    WRITE (3,3000) ADJUST
    DO 310 I=1,LAST
    310 ACCEL(I) =(ACCEL(I) - ADJUST)*SCALEA
C
IF (NFXTRC .GT. 1) GO TO 340
C
    AREA = 0.0
    DISP(1)=0.0
    TLAST = TIME(LAST)
    OO 320 I =2,LAST
    DT = TIME(I)-TIME(I-1)
    DISP(I)= OISP(I-1)+AREA*DT+DT*DT/6.*(2.*ACCEL(I-1)+ACCEL(I))
    320 AREA=AREA+DT/2.*(ACCEL(I)+ACCEL(I-1))
    A =6./TLAST*DISP(LAST)/TLAST-2./TLAST*AREA
    B=6./TLAST*AREA/TLAST-2./TLAST*6./TLAST*DISP(LAST)/TLAST
    DO 330 I=1,LAST
    330 ACCEL(I)=ACCEL(I)-A-B*TIME(I)
    340 WRITE (3,1080)
    WRITE (3,1040) (TIME(I), ACCEL(I), I=I,LAST)
    350 IF (NPUNCH .NE. 21 GO TO 360
C
    PUNCH BASELINE CORRECTED DATA
    WRITE (3,1060)
    PUNCH 1040, (TIME(I), ACCEL(I), I=I,LAST)
    WRITE (3,2010)
PH1 138
PH1 139
PH1 140
PH1 141
14
PH1 142
PH1 143
PH1 144
PH1 145
PH1 146
PH1 147
PH1 148
PH1 149
PH1 150
PH1 151
PH1 152
PH1 153
PH1 154
PH1 155
155
PH1 156
PH1 157
PH1 158
PH1 159
PH1 160
PH1 161
PH1 162
PH1 163
PH1 164
PH1 }16
PH1 166
PH1 167
PH1 168
PH1 169
PH1 170
PH1 171
PH1 172
PH1 173
PH1 174
PH1 175
PH1 176
PH1 177
PHI 178
PH1 179
PH1 180
PH1 1&1
PH1 182
PH1 183
PH1 184
PH1 185
PH1 186
PH1 187
PH1 187
PH1 189
PH1 190
PH1 191
PH1 191
PH1 193
PH1 194
PH1 195
PH1 195
PH1 196
PHI 197
PH1 198
PH1 199
PHI }20
PH1 }20
PH1 202
PH1 }20
```

```
    WRITE (3,1040) (TIMEII), ACCEL(I), I=1,LAST) PH1 204
    360 CONTINUE
    PH1 205
    IF (NPLOT .EO. OI GO TO 450
    WRITE (3,2020)
    WRITE (3,1040) (TIME(I), ACCEL(I), I=1,LAST)
    XMIN = TIME(1)
    TIME(LAST+1) = XMIN
    XMAX = TIME(LAST)
    SCALX = (XMAX-XMIN)/XLEN
    TIME(LAST+2)= SCALX
    YMIN = ACCEL(1)
    YMAX = ACCEL(1)
    DO 370 I=2,LAST
    IF (ACCEL(I) .GT. YMAX) YMAX= ACCEL(I)
    IF (ACCEL(I) .LT. YMIN) YMIN = ACCEL(I)
    370 CONTINUE
    ACCEL(LAST+1) = YMIN
    ACCEL(LAST+Z)=(YMAX-YMIN)/SIZE
    SCALY = (YMAX-YMIN)/SIZE
    WDY = SIZE+0.5
    IF (WDY.GT. 10.0) WDY = 10.0
C
C PLOT TIME - ACCELERATION DATA
380 CALL PLOTSIIBUF,1000,5)
    IF (XRED .EQ. 1.0 .AND. YRED .EO. 1.0) GO TO 390
    CALL SETFACT (XRED,YRED)
    390 IF (NCORR.EQ. 1) GO TO 420
            CALL PLOT (0.,-11.,-3)
            CALL PLOT (0.,0.5,-3)
            WRITE(3.9998)
    9998 FORMAT(1H,10X,"BEFDRE CALL AXIS")
            CALL AXIS(0.0,0.0,"REL. TIME IN COUNTS",-19,XLEN,0.,XMIN,SCALX)
            CALL AXIS(0.0,0.0,"REL. ACCEL. IN COUNTS",21,SIZE,90.,YMIN,SCALY)
            WRITE (3.9999)
    9999 FORMAT(1H,10X,"AFTER CALL AXIS")
            CALL SYMBOL (0.5,WDY,0.25,TITLE,0.,80) PH1 238
            IF (LAST .LE. 200) GO TO 410
        400 J=0
            I SYM=0
            GO TD 430
    410 J=1
            IS YM=4
            IFINPLOT.EQ.2I GO TO 430
            X(NFXTRC+1)=TIME(LAST+1)
            X(NFXTRC+2)=TIME(LAST+2)
            Y(NFXTRC+1)= ACCEL(LAST+1)
            Y(NFXTRC+2)=ACCEL(LAST+2)
            GO TO 430
C
        420 CALL PLOT (0.,-12.,-3)
            CALL PLOT (0.,5.5,-31
            CALL SYMBOL (0.,0.,1.,3,0.,-1)
            CALL PLOTTR (TIME,ACCEL,LAST,A,B,C,D)
            CALL PLOTTR (X,Y,NFXTRC,A,B,C,D)
            CALL SYMBOL (0.5,6.0,0.25,TITLE,0.,80)
            GO TO 440
        430 CALL LINE (TIME,ACCEL,LAST,1,J,ISYM)
            IF(NPLOT.EQ.2) GO TO 440
            CALL LINE (X,Y,NFXTRC,I,J,ISYM)
        440 CALL PLOT(20.0,0.0,450)
C
    450 CONTINUE
C
C
1000 FORMAT (4(2F10.0))
1010 FORMAT (/, 10X,4 BHTIME - ACCELERATION DATA READ FROM PUNCHED CARDS
            1)
1020 FORMAT (/, 10X,43HTIME - ACCELERATION DATA READ FPOM MAG TAPE/I PHI 27O
```

```
1030 FORMAT (/, 10X,41HBASELINE CORRECTED DATA WILL BE PLOTTED -,F5.1, PH1 271
    116H INCHES HIGH AND,F5.1,12H INCHES LONG) PH1 272
1040 FORMAT (4(2F10.3))
1050 FORMAT ( 3I5,4F10.0) PH1 274
PH1 273
1060 FORMAT (10X,48HBASELINE CORRECTED DATA WILL BE PUNCHED ON CARDS/) PH1 275
1070 FORMAT (10X,58HDIGITIZED DATA WILL BE PUNCHED ON CARDS EXACTLY AS PH1 276
    1FOLLOWS/I
1080 FORMAT (1X,/,10X,31HBASELINE CORRECTED DATA FOLLOWS/) PH1 27E
PH1 }27
1090 FORMAT (10X, 21HNO OF DATA POINTS ARE,I5, /,10X,38HDATA AS IT APPEAR PH1 279
    1S FROM INPUT FOLLOUS //)
2000 FORMAT (/10X, 2BHNO OF FIXED TRACE POINTS ARE,I5,34H AND APPEARS F PH1 2B1
    IOM INPUT AS FOLLOWS//I
2010 FORMAT (1X,1,10X,2OHPUNCHED DATA FOLLOWS//)
2020 FORMAT (1X, Iノ,10X, 2OHPLDTTED DATA FOLLOWSIIJ 
FORMAT (1X,/f,10X,2OHPLOT
2030 FORMAT ( 2X,//,10X,32HNO MORE DATA, PROGRAM TERMINATES) PH1 285
2040 FORMAT (4X,2(F6.0)) PH1 286
2050 FORMAT (20A4)
2060 FORMAT (1H,2OA4,/1)
2070 FORMAT ( }1X,1,10X,5BHINPUT DATA EXCEEDED ARRAY SIZE - REMOVE DATA PH1 2BQ
    1EYOND TIME =,F10.3,18H AND RERUN PROGRAM//।
2080 FORMAT (1X,/,10X,57HINPUT DATA EXCEEDED ARRAY SIZE - DATA TRUNCAT
    1D AT TIME =,F10.3,1,10X,42HFIXED TRACE DATA -IF ANY- WILL NOT BE
    2SED//I
2090 FORMAT 1 1X,1,10X,45HSUBTRACTED FIXED TRACE DATA FROM ACCELEROGRAM/ PH1 294
    .l
PH1 }29
3000 FORMAT (1X,1,9HADJUST =,F10.3,1) PH1 296
3010 FORMAT (10X,I1,4X,I1,5X,I1,5X,4F10.3,/) PH1 297
3020 FORMAT (1X,1,10X,5HNPLOT, GHNPUNCH,6HINPUTP,6X,4HSIZE,6X, 4HXLEN, 4X, PH1 298
    .6HSCALET,4X,6HSCALEAI
PH1 }29
4000 FORMAT (10X,31HNORMAL TERMINATION, END OF DATA)
    RETURN
PH1 300
    END PH1 301
```

SUBRDUTINE TRK010
C
C\#\#\#\# THIS SUBROUTINE READS DATA FROM AN ELECTPAK DATA TAPE AND OUTPUTS ON TAPE IN DATA WHICH IS IN A FORM ACCESSIBLE BY PHASEI PREGRAM. THIS PROGRAM IS A PATTERN MATCH PROCEDLRE, PROBABLY BETTER SUITED TO WRITING IN SNOBOLム. THE TARGET PATTERN IS
ZZZZZZZNNNNSNHNNNSNNNNNCCCCCCCCCCCCCCCCCCCCZZZZ...
WHERE I IS ANY CHARACTER
N IS ANY DECIMAL DIGIT
S IS A SIGV (+ DR -)
C IS A SET JF CHARACTERS ASSOCIATED WITH THE NUMSER
THE GOAL IS TO DJTPUT RECORDS OF THE ENTIRE 30 CHARACTER RECORD AND THE COMMEVTS BEIWEEN THIS $\triangle N D$ THE PRECEEDING PATTERN. THESE RECORDS $\triangle R E$ OUTPUT UN TAPE?.

IMPLICIT INTEGER (A-Z)
LOGICAL* JBUF (GOOJ), JPLUS(4),NPLUS,JMINUS(4), MINUS, CHR(4)
LOGICAL*I LPLUS(4), (MINUS(4), CHR2(4)
OIMENSION IBUF (1500)
EDUIVALENCE (IPLUS, JPLUS), (IMINUS, JMINUS), (INT, ©HR)
EOUIVALENCE (KPLUS, LPLUS), (KMINUS,LMINUS), (INT2,CHR2)
DATA IPLUS/IH+/,IMINUS/IH-/,LSUF/1260/
DATA CHRWRD/4/, END/11/,NEXT/6/, BEGIN/4/
DATA IN/G/, DUT/7/,PRT/3/
C
C
C
$\angle A S T=0$
REWIND DUT.

```
    MINUS=JMINUS(1)
    NPLUS=JPLUS(1)
    KP\perpUS=0
    KMINUS=0
    LPLUS(4)=JPLUS(1)
    LMINUS(4)=JMINUS(1)
    NPRU=0
    WRITE (PRT,1)
    1 FORMAT (1HI)
C
C
    10 REAO (IN,]1,END=998,ERR=995) (IBUF(I),I=1,LEUF)
    11 FORMAT :1O(:26A4))
    NPRU=NPRU+1
    20 CONTINUE
    LENGTH=LBUF
    DO 30 I=I,LENGTH
    INT=IBUF(I)
    OO 4O J=1,CHRWRO
    LAST=LAST+1
    JBUF(LAST)=CHR(J)
    40 CONTINUE
    3 0 ~ C O N T I N U E ~
    POS =1
    INT=O
    INT2=0
C
C SEARCH THROUGH BLOCK FOR TARGET PATTERN
C 50 cONTINUE
    IF (PDS+END .GT. LAST) GO TO 100
    CHR2(4)=JBUF(POS+NEXT)
    CHR(4)=JBUF(POS)
    IF(((INT.EQ.KPLUS).OR.(INT.EQ.KMINUS))
    -.ANO. ((INT2.EQ.KPLUS).OR. (INT2.EQ.KMINUS)))
    - GOTO 60
    POS=POS+1.
    GO TO 50
C
c PATYERN HAS BEEN FOUNO
    6) CONTINJE
    J=POS-BEGIN
    K=POS +END
    WRITE (OUT,70) (JBUF(I),I=J,K)
    70 FORMAT (16A1)
    WRITE (PRT,80) (JSUF(I),I=J,K)
    8O FORMAT (1X,16A1)
    PDS=K+1
    GO TO 50
c
c
100 CONTINUE
    J=0
    OO 110 I=POS,LAST
    J= J+1
    JBUF(J)=JBUF(I)
    110 CONTINUE
    LAST=J
    GO TO 10
C
C PARITY ERROR HAS BEEN DETECTEO
C
```

D-8

```
    9 9 6 ~ C O N T I N U E ~
        NORU=NPRU+1
    WRITE (PRT,997) NPRU
    Q97 FORMAT (4OH *** PARITY ERROR DETFCTEO IN PRU NUMBER,I5,4H ***)
    GO TO 20
C
    998 CONTINUE
        WRITE (PRT,999)
    9 9 9 ~ F O R M A T ~ ( 2 9 H * * * ~ E N D ~ O F ~ F I L E ~ D E T E C T E D * * * ) ~
        REWIND OUT
        RETURN
        END
C
C
C
    SUBROUTINE PLOTTR (X,Y,LAST,A,B,C,D) PLR 001
    IMPLICIT REAL*4 (A-H,O-Z)
C
DIMENSION X(3000),Y(3000)
```

```
X(1) =A*X(1)-B
```

X(1) =A*X(1)-B
Y(1)=C*Y(1)-D
Y(1)=C*Y(1)-D
CALL PLDT (X(1),Y(1),3)
CALL PLDT (X(1),Y(1),3)
DO 1 I=2,LAST
DO 1 I=2,LAST
X(I) =A*X(I)-B
X(I) =A*X(I)-B
Y(I) =C*Y(I)-D
Y(I) =C*Y(I)-D
1 CALL SYMBOL (X(I),Y(I),0.1,74,0.0,-1)
1 CALL SYMBOL (X(I),Y(I),0.1,74,0.0,-1)
RETURN
RETURN
END
END
SUBROUTINE PHASEZ(XRED,YRED,DACCEL) PH2 001
IMPLICIT REAL*4 (A-H,0-Z)


```
        SUBROUTINE PHASEZ IS A COMPUTER PROGRAM WHICH READS DIGITIZED
        ACCELEROGRAM DATA AND PROCESSES THIS DATA IN ORDER TO ELIMINATE
        ERRORS IN RECORDING AND DIGITIZING THE ACCELEROGRAM.
        THE CORRECTED ACCELOGRAM IS NUMERICALLY INTEGRATED TO DBTAIN THE
        CORRESPONDING VELOCITY ANO DISPLACEMENT.
        THESE QUANTITIES ARE NOW ACCEPTABLE FOR USE IN DETERMINING
        THE DFSIGN SPECTRA FOR THE EARTHOUAKE. PH2 011
        FINALLY, A PLOT OF THESE QUANTITIES WILL BE PLOTTED IF DESIRED. PH2 012
PH2 013
PH2 014
PH2 015
COMMON ACCEL(5500),TIME(5500),TITLE(20),VEL(3000),DISP(3000),LAST
COMMON/PLTBUF/IBUF(1000)
COMMON /ORMS/ WTS(275),NUMBER
PH2 017
DIMENSION ACCEL1(5500),ACCEL2(5500), ACCEL3(5500), ACCEL4(5500), PH2 018
1 ACCELG(5500), ACCEL7(5500), ACCEL8(5500), ACCEL9(5500)
PH2 019
I DISP1(300), ATEMP(5500), ACCEL5(3000),TINST(3000) PH2 021
PH2 020
EQUIVALENCE (ACCEL,ACCEL1,ACCEL2,ACCEL3,ACCEL4,ACCEL6,ACCEL7,ACCEL PH2 022
18,ACCEL9)
PH2 023
EQUIVALENCE (ACCEL5,VEL), (TIME,ATIME,BTIME,CTIME,ATEMP)
PHZ 024
EQUIVALENCE (DISPI,VELI), (LAST,NOI), (DISP,TINST)
```

PH2 002
PH2 003 PH2 004
PH2 0.05
PH2 006
PH2 007
PH2 008
PH2 009
PH2 010
PH2 011
PH2 012
PH2 013
PH2 015
$\begin{array}{ll}\mathrm{H} 2 & 017\end{array}$
PH2 018
PH2 019

- 12

PH2 021
022
PH2 024
PH2 025

```
C
    READ (1,1090) TITLE 
```



```
    PH2 033
    T = NATURAL PERIOD DF ACCELEROMETER IN SEC. PH2 034
    CD = DAMPING COEFFICIENT OF ACCELEROMETER IN PER CENT OF CRITICAL PH2 035
    SCALET = TIME SCALING FACTOR TO CONVERT TIME DATA TO SECONDS PH2 036
        SCALEA = ACCELERATION SCALING FACTOR TO CONVERT ACCELERATION PH2 037
                DATA TO UNITS OF GRAVITY
    NPLOT * = 0, NO PLOT IS DESIRED
                = 1, PLOT ACCELERATION ONLY
                =2, PLOT ACCEL,VELDCITY, AND DISPLACEMENT
        = 3, PLOT ALL THE ABOVE AND THE ORMSBY FILTER CORRECTION
        = 4, PLOT ORMSBY FILTER ONLY
    READ (1,1030) T,CD,SCALET,SCALEA,NPLOT, ISHORT,NEWWAY,N2WAY,N3WAY,
    . N4WAY, N5WAY, N6WAY
    WRITE (3,4000)
    WRITE (3,1060) T,CD,SCALET,SCALEA,NPLOT, ISHORT,NEWWAY,N2WAY,N3WAY, PH2 O50
    .N4WAY,N5WAY,N6WAY PH2 051
    REAO PH PH2 052
    PMOH2054
    CALL REDATA (SCALET)
        CONVERT DATA TO SEC AND CM/SEC/SEC (ACCELI)
    CALL DATALT (SCALET,SCALEA)
    FROMIN = 0.07
    FROMAX = 25.0
        NO1 = MAXIMUM NUMBER OF 0.01 SECOND INTERVALS + 1
    N1 = LAST
    NO1=(TIME(LAST)+0.009)*100.0
    LAST = NOL
    NO2 = (LAST+1)/2
    N=NO2+9
    N2=N/10
    N2P1=N2+1
    N2M1 = N2-1
    NO2=10*(N2-1)+1
    NNO2 = NO2-8
    WRITE (3,201.9)
    WRITE (3,2020) NO1,NO2,N1,N2
    STORE UNEQUALLY SPACED TIME DATA TEMPORARILY IN DISP ARRAY. PH2 080
    DO 10 I= 1,N1
    10 DISP(I)=TIME(I)
        OBTAIN INTERPOLATED VALUES (ACCELZ) AT 0.01 SEC TIME INCREMENTS
    DELT=0.01
    CALL EOLSPC (DELT,NI)
    IF (NSWAY EQ. 1) GO TO 18
    IF(N5WAY .EQ. 2) GO TO 40
    IF (NGWAY .EQ. 1) GO TO 18
    GO TO 20
```

D-10

```
    18 NPASS = 5
    CALL HORIZ(NPASS)
    20 CONTINUE
C
C IF ACCELEROGRAM WAS NOT RECORDED BY AN ACCELEROGRAPH, DO NOT
    LOW-PASS FILTER
    IF (CD.LE. 0.0 .OR. T .LE. O.0) GO TO 40
    APPLY ORMSBY LOW-PASS FILTER (ACCEL3)
    FSUBC = FROMAX
    FSUBT = FSUBC+2.0
    DELT=0.01
    I S YM = 1
    NSHORT = 1
    CALL ORMSBY (ISYM,FSUBC,FSUBT,DELT,ACCEL3,NSHORT)
    NSHORT = O
    DISCARD EVERY OTHER POINT OF SMOOTHED CURVE
    L=1
    00 30 I= 1,LAST,2
    ACCELG(L) = ATEMP(I)
    BTIME(L)=(L-1)*0.02
    30 L=L +1
    BTIME(L)=(L-1)*0.02
        EQUALLY SPACED POINTS ARE NOW 0.02 SEC APART (ACCEL4)
    WRITE (3,4010)
    WRITE (3,2080)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=1,8)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=NNO2,N02)
    GO TO 70
40 L = 1
    OO 50 I=1, LAST,2
    ACCEL4(L)= ACCEL2(I)
    BTIME(L)=(L-1)*0.02
50 L = L +1
    BTIME (L)=(L-1)*0.02
60 CONTINUE
    IF(N5WAY .EQ. 2) N5WAY = 1
    WRITE (3,4010)
    WRITE (3,2080)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=1,8)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=NN02,NO2)
70 CONTINUE
    IF (N2WAY .EQ. 8) GO TO }7
    GO TO 7B
72 DO 73 I= 1,NO2
73 ACCEL(I) = ACCELII; - DACCEL
    DO 74 I=1,N02
74 DISP(I)= ACCEL(I)
    GO TO 405
7B IF (T .LE. 0.0.OR. CD.LE. O.O) GO TO 110
        CORRECT FOR INSTRUMENT RESPONSE TO OBTAIN ABSOLUTE GROUND ACCEL.
90 DELT = 0.02
    WRITE (3,1040) T,CD
    WO = 6.28318531/T
    CD = CD*0.01
    NXM = NO2-1
    DO 100 I=2,NXM
    PH2 095
    PH2 096
    PH2 097
    PH2 098
    PH2 099
    PH2 }10
    PH2 101
    PH2 }10
    PH2 }10
    PH2 104
PH2 105
PH2 106
PH2 107
PH2 108
PH2 }10
PH2 110
PH2 111
PH2 112
PH2 113
PH2 114
PH2 115
PH2 116
PH2 117
PH2 118
PH2 119
PH2 120
PH2 121
PH2 122
PH2 123
PH2 124
PH2 125
PH2 126
PH2 127
PH2 12&
PH2 129
PH2 130
PH2 131
PH2 132
PH2 133
PH2 134
PH2 135
PH2 136
PH2 137
PH2 139
PH2 140
PH2 141
PH2 142
PH2 143
PH2 144
PH2 145
PH2 146
PH2 147
PH2 148
PH2 150
PH2 151
PH2 152
PH2 154
PH2 155
PH2 156
PH2 157
PH2 158
PH2 159
PH2 160
PH2 161
PH2 162
```

```
        01=(ACCEL4(I+1)-ACCEL4(I-1))/(2.0*DELT) PH2 163
D2=(ACCEL4(I-1)-2.0*ACCEL4(I)+ACCEL4(I+1))/DELT**2
D2=(ACCEL4(I-1)-2.0*ACCEL4(I)+ACCEL4(I+1))/DELT**2
        TINST(1) = ACCEL4(1)
    TINST(NO2) = ACCEL4(NO2)
    DO 105 I=1,N02
    105 ACCEL(I) = TINST(I)
        WRITE (3,1050)
    WRITE (3,2080)
        WRITE (3,1010) (TIME(I),ACCEL(I),I=1,8)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=NN02,N02)
C
    GO TO 120
    110 WRITE (3,2010)
C
    120 CONTINUE
C
C
C
C
    LEAST SQUARE SMOOTHED CURVE AND SAVE (ACCEL5)
    NPASS = 1
    IF (NEWWAY EQ. I) GO TO 130
    IF (N2WAY EQ. 1) GO TO 130
    IF (N3WAY .EQ. 1) GO TO 130
    IF (N4WAY .EQ. 1) GO TO 130
    IF (N4WAY .EQ. 5) GO TO 150
    IF (N5WAY .EQ. 1) GO TO 270
    IF (N6WAY .EQ. 1) GO TO 190
    GO TO 150
    130 NPASS = 6
    CALL HORIZ (NPASS)
    GO TO 170
    150 CALL LESTSO (ACCEL5,NPASS)
    IF (N4WAY .EQ. 5) GO TO 278
    160 CONTINUE
C
    LO2 = NO2 + 1
    170 DO 180 I= 1,LO2
    180 ACCEL(I) = VEL(I)
    IF (N3WAY .EQ. 1) GO TO 270
C
C
C
C
    190 CALL HOLWAY (NO2)
    WRITE (3,2070)
    WRITE (3,2080)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=1,8)
    WRITE (3,1010) (TIME(I),ACCEL(I),I=NN02,N02)
C
C
    DECIMATE ACCELERATION FOR LOW PASS FILTERING
    L=1
    00210 I = 1,N02,10
    ACCELT(L) = ACCELG(I)
    CTIME(L)=(L-1)*0.2 PH2 219
210 L=L+1
    CTIME(L)=(L-1)*0.2
    EQUALLY SPACED. POINTS ARE NOW 0.2 SEC APART (ACCELT)
C
    WRITE (3,3090)
    WRITE (3,3000)
    WRITE (3,3000)
C
PH2 164
PH2 165
C
        APPLY RUNNING MEAN FILTER (ACCEL5)
    PH2 166
    PH2 167
    PH2 168
WRITE (3.1050)
PH2 169
PH2 170
PH2 171
PH2 172
PH2 173
```

```
IF (N3WAY .EQ. 1) GO TO 270
PH2}17
PH2 175
PH2 176
PH2 176
PH2 178
PH2 179
PH2 180
PH2 181
PH2 182
PH2 182
PH2 184
PH2 185
PH2 186
PH2 187
PH2 188
PH2 188
PH2 190
PH2 191
PH2 192
PH2 193
PH2 194
PH2 194
PH2 196
PH2 197
PH2 199
PH2 200
PH2 201
PH2 }20
PH2 203
PH2 204
PH2 205
PH2 206
PH2 }20
PH2 208
PH2 208
PH2 210
PH2 211
PH2 211
PH2 }21
PH2 214
PH2 }21
PH2 216
PH2 217
PH2 218
PH2 21.9
PH2 220
PH2 221
PH2 222
PH2 223
PH2 }22
PH2 225
PH2 226
PH2 227
    APPLY ORMSBY LOW-PASS FILTER ON DECIMATED DATA
PH2 228
PH2 229
PH2 230
PH2 231
```

D-12


```
    NPASS =0
    CALL INTERP (DELT,N2,NPASS,DISP1,ATEMP,NEWWAY)
    EQUALLY SPACED POINTS ARE NOW O.02 SEC APART
    SUBTRACT FILTERED DISPLACEMENT (ATEMP) FROM INITIAL DISPL. (DISP)
    DO 440 I=1,NO2
    440 DISP(I)=0ISP(I)-ATEMP(I)
    WRITE (3,1080)
C
    DO 450 I= 1,NO2
    450 TIME(I)=(I-1)*0.02
        WRITE (3,4040)
        WRITE (3,1010) (TIME(I), DISP(I), I=1,NO2)
    470 CDNTINUE
    IF (NZWAY .EO. 8) GO TO 475
    IF (NPLOT .LE. O.OR.NPLOT .GE. 5) GO TO 500 PH2 460
    CONVERT ACCELERATION BACK TO UNITS OF GRAVITY
    480 CONTINUE
    DO 490 I=1,N
    490 ACCEL9(I)=ACCEL9(I)/980.665
    WRITE (3,2060)
    WRITE (3,2080)
    WRITE (3,1010) (TIME(I),ACCELQ(I),I=1,8)
    WRITE (3,1010) (TIME(I),ACCELQ(I),I=NNO2,NO2)
    DELT = 0.02
    CALL PLTDAT (NPLDT,DELT,XRED,YRED,NOZ)
C
    500 CONTINUE
C
1000 FORMAT((1X,6(I5,FIO.3)))
1010 FORMAT((1X,8(F8.3,F9.3)))
1020 FORMAT((1X,6(F10.3,E10.3)))
1030 FORMAT (4F10.6,8I5)
1040 FORMAT (1X,1,10X,31HNATURAL PERIOD OF INSTRUMENT IS,F10.5,1,10X,
    1 45HCRITICAL DAMPING COEFFICIENT DF INSTRUMENT IS,F10.5,8H PERCENT
    2//1
1050 FORMAT (1X,/,IOX, 3GHAFTER INSTRUMENT RESPONSE CORRECTION//)
1060 FORMAT (IOX,4F10.6,8I10/)
1070 FORMAT (1X,1,10X,24HFINAL VELOCITY IN CM/SEC/)
1080 FORMAT (1X,1,10X,24HFINAL DISPLACEMENT IN CM/)
1090 FORMAT (20A4)
2000 FORMAT (1H,20A4,//)
2010 FORMAT (/, 10X,41HNO INSTRUMENT RESPONSE CORRECTION IS MADE/)
2019 FORMAT (1X,1,3X,3HNO1, 2X,3HN02,3X,2HN1,3X,2HN2)
2020 FDRMAT (1x,4I5)
2030 FORMAT (1X,1,10X,32HFINAL ACCELERATION IN CM/SEC/SEC/)
2040 FORMAT (1X, 1,10X,26HACCELERATION IN CM/SEC/SEC/)
2050 FORMAT ( }1\textrm{X},1,10\textrm{X},18\textrm{HVELOCITY IN CM/SEC/)
2060 FORMAT (IX, 1, 10X,23HFINAL ACCELERATION IN G/)
2070 FORMAT (1X,/, 10X,30HHOLLOWAY FILTERED ACCELERATION/) PH2 499
2080 FORMAT (5X,4HTIME, 4X,5HACCEL)
3000 FORMAT ( }4x,5HCTIME, 3X,6HACCEL7
3010 FORMAT (IX, /, 10X,35HORMSBY FILTERED DISPLACEMENT, DISP1/)
3020 FDRMAT ( }1X,1,10X,45HFILTERED DATA PLACED IN ACCEL ARRAY AT . 2 SEC/ PH2 503
        ,
3030 FORMAT (5X,4HTIME,6X,3HVEL)
    PH2 438
C
    PH2 439
|
C
C
C
C
    PH2 440
    PH2 441
    PH2 442
    PH2 443
    PH2 444
    PH2 445
    PH2 446
    PH2 447
    PH2 448
    PH2 449
    PH2 450
    PH2 451
    PH2 452
    PH2 453
C
C
    PH2 454
    PH2 455
C
C
C
C
C
C
C
C
    460
    PH2 461
    PH2 462
    PH2 463
    PH2 464
    PH2 465
    PH2 466
    PH2 }46
    PH2 468
    PH2 469
    PH2 470
    PH2 471
    PH2 472
    PH2 473
    PH2 473
    PH2 475
    PH2 476
    PH2 477
    PH2 477
    PH2 479
    PH2 480
    PH2 481
PH2 482
PH2 483
PH2 484
PH2 485
PH2 486
PH2 487
PH2 488
PH2 489
PH2 493
FORM (1X,/,10X,32HFINAL ACCELERATION IN CM/SEC/SEC/) PH2 495
PH2 496
PH2 497
IN (IX,/,10X,23HFINAL ACCELERATION IN G/) PH2 498
PH2 490
PH2 501
PH2 504
PH2 505
```

D-16

```
3040 FORMAT (5X,4HTIME,5X,4HVEL1) PH2 5C6
3060 FORMAT (5X,1HI,5X,5HOISP1) PH2 507
3070 FORMAT (4X,5HTINST, 3X,6HACCEL8)
3080 FORMAT (1X,1,10X,32HFILTERED ACCELERATION AT . O2 SEC/)
3090 FORMAT (1X,/,10X,41HDECIMATED ACCELERATION PRIOR TD FILTERING/)
4000 FORMAT ( }16X,1HT,9X,2HCD,5X,6HSCALET,5X, 6HSCALEA,9X,5HNPLOT,
    - 5X,6HISHORT,4X,6HNEWWAY, 4X,5HN2WAY,5X,5HN3WAY,5X,5HN4WAY,
5X,5HN5WAY, 5X,5HN6WAY/I
4010 FORMAT (1X,/,10X,51HEOUALLY SPACED POINTS ARE NOK . O2 SEC APARTIAC
    .CEL4)/]
4020 FORMAT (1X, /, 10X,36HDECIMATED VELOCITY, VEL1, AT . }2\mathrm{ SEC./)
4030 FORMAT (1X, /, 10X,4 1HORMSBY FILTERED VELOCITY, VEL1, AT . 2 SEC/)
4040 FORMAT ( }5X,4\mathrm{ HTIME, 5X,4HDISP)
4050 FORMAT (1X, 1, 10X,5OHACCEL9 WITH B TERM FROM LESTSO VELOCITY SURTRA.
    .CTED/I
4060 FORMAT (1X, /,10X,24HACCEL9 = ACCEL5 - ACCELB/)
4070 FORMAT ( 1X, /, 10X,57HACCEL9 CORRECTED FOR VELOCITY CHANGE DUE TO OR
    .MSBY FILTER/I
4080 FORMAT (5X,1HI,6X,4HVELI)
4090 FORMAT (1X,1,10X,2 3HINTEGRATED DISPLACEMENT/)
        RETURN
        END
```

 RED 001
 SUBROUTINE REDATA (A)
 IMPLICIT REAL*4 (A-H,0-Z) !
 C
C
C
C
$\stackrel{C}{C}$
THIS SUBROUTINE REAOS DIGITIZED DATA FROM PUNCHED CARDS AND
CHECKS FOR INCREASING VALUES OF TIME
RED 002
RED 003
REO 004
COMMON ACCEL (5500), TIME (5500), TITLE (20),VEL(3000), DISP(3000),LAST
C
C
C
$\mathrm{NT}=-1$
$10 \mathrm{NT}=\mathrm{NT}+1$
RED 010
REO 011
READ (1, $1000, E N D=20)(T I M E(N T * 4+I), A C C E L(N T * 4+I), I=1,4)$
GOTO 10
20 LAST $=4 * N T \quad$ RED 014
C
IF (ACCEL(LAST) .EO. 0.0) LAST = LAST-1
IF (ACCEL(LAST) .EO. 0.0) LAST = LAST-1
IF (ACCEL(LAST) .EO. 0.0) LAST = LAST-1
IF (LAST . LE. 2998) GO TO 40
C
30 WRITE 13,1040$)$ TIME(2998)
STOP 777
$40 X N=T I M E(L A S T) * \Delta$
IF (XN.LE. 54.95) GO TO 60
C
$50 \mathrm{XNN}=54.95 / \mathrm{A}$
WRITE $(3,1040)$ XNN
RED 015
RED 016
RED 017
RED 018
RED 020
RED 021
RED 022
RED 023
RED 025
RED 026
RED 027
C
WRITE (3,2000)
.C
STOP 77
60 WRITE $(3,1030)$ LAST
C
C
C
CHECK DATA FOR CONTINUOUSLY INCREASING TIMES
$G \Delta P=1.0 / A / 4.0$
のハののの
C GAP $=0.25$ SEC IN TERMS DF INPUT TIME VALUES
DATA POINTS DIGITIZED FURTHER APART THAN THIS VALUE ARE NOT
CONTINUOUS AND THE REMAINING DATA IS TRUNCATED.
C IF THE DIFFERENCE BETWEEN TWO ADJACENT VALUES OF TIME IS LESS
RED 030
RED 031
RED 032
RED 033
RED 034
RED 035
RED 036
RED 037
RED 038
RED 039
RED 040
RED 041

```
c than gap, and the time values are decreasing, the smaller value red 042
            IS EQUATED tO THE PREVIOUS LARGER VALUE.
        LM1 = LAST-1
C
        OO BO M=1,LM1
        IF (ABS(TIME(M+1)-TIME(M)).GT. GAP) GO TO 90
        IF(TIME(M+1)-TIME(M)) 70,80,B0
    70 TIME(M+1) = TIME(M)
    8 0 ~ C O N T I N U E ~
C
    GO TO 100
    90 IF (M .LT. LAST) WRITE (3,1020) GAP, M
    LAST = M
    100 CONTINUE
        LLAST = LAST - B
        WRITE (3,1050)
        WRITE (3,1010) (TIME(I), ACCEL(I), I=1,8)
        WRITE (3,1010) (TIME(I), ACCEL(I), I=LLAST,LAST)
C
C
    1000 FORMAT (4(2F10.0))
    1010 FORMAT((1X,8(FB.3,F9.3)1)
    1020 FORMAT (10X,68HTHE MAXIMUM DIFFERENCE ALLOWED BETWEEN SUCCESSIVE V
        IALUES OF TIME IS ,F10.3,//,10X,81HTHIS DIFFERENCE HAS BEEN EXCEEDE
    2D, thUS THE tOTAL NUMBER OF POINTS ARE REDUCED TO,I5//I
    1030 FORMAT (10X,27HNO OF INPUT DATA POINTS ARE,I5//)
1040 FORMATI//,10X,13HTOO MUCH DATA,//,10X,2GHREMOVE DATA BEYOND TIME
    2=,F10.3,1BH AND RERUN PROGRAM//।
1050 FORMAT (5X,4HTIME,4X,5HACCEL)
2000 FORMAT (10X,2BHINPUT DATA OVERLOADS PROGRAM)
        RETURN
        END
RED 072
RED 073
```

```
    SUBROUTINE DATALT (A,B) DAT 001
```

 SUBROUTINE DATALT (A,B) DAT 001
 IMPLICIT REAL*4 (A-H,0-Z)
 IMPLICIT REAL*4 (A-H,0-Z)
 C THIS SUBROÚTINE CONVERTS THE DATA TO USABLE OUANTITIES OAT 002
C THIS SUBROÚTINE CONVERTS THE DATA TO USABLE OUANTITIES OAT 002
C COMMON ACCEL(5500),TIME(5500),TITLE(20),VEL(3000),DISP(3000),LAST
C COMMON ACCEL(5500),TIME(5500),TITLE(20),VEL(3000),DISP(3000),LAST
C
C
C
C
C DAT 008
C DAT 008
C IF (A .EQ. 1.O .AND. B .EO. 1.0) GO TO 20
C IF (A .EQ. 1.O .AND. B .EO. 1.0) GO TO 20
WRITE (3,1020) A,B
WRITE (3,1020) A,B
C
C
DO 10 I=1,LAST
DO 10 I=1,LAST
TIME(I) = TIME(I)*A
TIME(I) = TIME(I)*A
ACCELII) = ACCEL(I)*B*9B0.665
ACCELII) = ACCEL(I)*B*9B0.665
10 CONTINUE
10 CONTINUE
C
C
GO TO 40
GO TO 40
20 CONTINUE
20 CONTINUE
DO 30 I=1,LAST
DO 30 I=1,LAST
30 ACCEL(I)=ACCEL(I)*9B0.665
30 ACCEL(I)=ACCEL(I)*9B0.665
40 CONTINUE
40 CONTINUE
50 CONTINUE
50 CONTINUE
CORRECT TIME BASE TO BEGIN WITH INITIAL TIME = 0
CORRECT TIME BASE TO BEGIN WITH INITIAL TIME = 0
IF(TIME(1) .EQ. 0.0) GO TO 70
IF(TIME(1) .EQ. 0.0) GO TO 70
00 60 I=2,LAST
00 60 I=2,LAST
TIME(I)= TIME(I)-TIME(1)
TIME(I)= TIME(I)-TIME(1)
6 0 ~ C O N T I N U E ~
6 0 ~ C O N T I N U E ~
TIME(1)=0.0
TIME(1)=0.0
DAT 008
DAT 008
DAT 009
DAT 009
DAT 010
DAT 010
DAT 011
DAT 011
DAT 012
DAT 012
Dat 012
Dat 012
C
C
DAT 004
DAT 004
C

```
C
```

```
    7 0 ~ C O N T I N U E ~ O A T ~ O 3 2 ~
        LLAST = LAST - 8 OAT 033
        WRITE (3,1000)
    DAT 034
    WRITE (3,1030) DAT 035
    WRITE (3,1010) (TIME(I), ACCEL(I), I=1,8) DAT 036
    WRITE (3,1010) (TIME(I), ACCELII), I=LLAST,LAST) DAT 037
C
C}1000\mathrm{ FORMAT (15X,79HREVISED DATA WITH TIME IN SEC - ACCELERATION IN CM/
    1SEC/SEC - BASELINE CORRECTED//I
    1010 FORMAT((1X,8(F8.3,F9.3)))
    1020 FORMAT (//, 10X, 27HTIME ARRAY IS MULTIPLIED BY,F10.6,18H TO OBTAIN
    1SECONDS,/,10X, 35HACCELERATION ARRAY IS MULTIPLIED BY,F1O.6,47H TO
    2OBTAIN ACCELERATION IN TERMS OF GRAVITY (GI//)
1030 FORMAT (5X,4HTIME,4X,5HACCEL)
    RETURN
    END
    DAT 039
    DAT 040
    DAT 041
    DAT 042
    DAT 043
    DAT 044
    DAT 045
    DAT 046
    DAT 047
    DAT O4B
EQL 002
C FROM THE ACCEL ARRAY IN COMMON, THE DATA IS INTERPOLATED TO
C EOUALLY SPACED TIMES (DELT) AND REPLACES OLD UNEOUALLY SPACED
        EQUALLY SPACED TIME 
        THE TEMP ARRAY TEMPORARILY STORES THE DATA DURING INTERPOLATION.
        COMMON ACCEL(5500),TEMP(5500),TITLE (20),VEL(3000),TIME(3000),LAST
C
C C EOL 011
C N NUMBER OF EOUALLY SPACED TIME INCREMENTS OQL O11
    N=LAST
    IF (DELT .EO. 0.02) N=N1* 10
    M=N+1
    NN=N1+1
    WRITE (3,1020) N
C
    LL=1
    ATIME =0.0
    DO 30 I =2,NN
    DO 20 L =LL,M
    IF (ATIME.GT. TIME(I)) GO TO 30
    IF (TIME(I)-TIME(I-1)\ 30,30,10
    IF (TIME(I)-TIME(I-1)\ 30,30,10
        1)-TIME(I-1))
            ATIME = L*DELT
        20 CONTINUE
        30 LL = L
            DO 40 I=2,M
            ACCEL(I)=TEMP(I)
        40 TEMP(I)=(I-1)*DELT
            TEMP(1)=0.0
C
    WRITE (3,1000)
    LM=M-8
    WRITE (3,1010) (TEMP(I), ACCEL(I), I=1,8)
    WRITE (3,1010) (TEMP(I), ACCEL(I), I=LM,M)
C
C
C}1000\mathrm{ FORMAT (7X,4HTIME,5X,5HACCEL)
    1010 FORMAT((1X,4(2F10.3)')
1010 FORMAT((1X,4(2F10,3)))
    RETURN
    SUBROUTINE EOLSPC (DELT,N1) EOL OO1
    IMPLICIT REAL*4 (A-H,0-Z)
    EOL 007
EOL O13
EOL 014
EOL 015
EOL 016
EOL 017
    EOL 003
    EOL 003
    EOL 004
    EOL 005
    EOL 006
C
EOL O18
EOL 019
EOL 020
EOL 021
EOL 022
EOL 023
EOL 024
EOL 024
EOL O25
EOL 026
EOL O27
EOL 027
EOL 028
EOL O29
EOL 030
EOL 031
EOL 032
EOL 033
EOL 034
EOL O35
EQL 036
EOL 037
EOL O38
EOL 040
EOL O41
EOL 043
    RETUR
EOL 044
EOL 045
```

```
    SUBROUTINE LESTSO (RET,NPASS) LES 001
    IMPLICIT REAL*4 (A-H,0-Z)
C LES 002
C TEMP ARRAY IS ALWAYS LEAST SQUARED. LES OOJ
    RETN ARRAY RETURNS PROPER DATA AND SHARES STORAGE WITH ACCEL5. LES 004
    COMMON̈ ACCEL(5500),TIME(5500),TITLLE(20),VEL(3000),TEMP(3000),LAST
    DIMENSION RET(3000)
    LES 007
C
C
    DT = 0.02
    TLAST = FLOAT(LAST)*0.01
    IF (TLAST.EQ. 0.0) TLAST = FLOAT(LAST-1)*0.01
    LES 013
    N=LAST/2
    NPl=N+1
    LES 014
    00 10 I=1,NP1
    IF (TIME(I) .LT. 0.0) GO TO 2O
    10 CONTINUE
    20 NBEG = I
    WRITE (3,1080) NP1
    IF (NPASS .EO. 2) GO TO 110
    30 AREA = 0.0
        DIS = 0.0
        NM1 = N-1
        DO 40 I= I,N
        IF (I .EO. NBEG) AREAI = AREA
        IF (I .EO. NBEG) DISI = DIS
        DT = TIME(I+I)-TIME(I)
        DIS=DIS+AREA*DT+DT*DT/6.0*(2.0*ACCEL(I)+ACCEL(I+1))
    40 AREA=AREA+(ACCEL(I)+ACCEL(I+1))*DT/2.0
        WRITE (3,2030)
        WRITE (3,1090), DIS,AREA,N,TLAST,TIME(N+1)
    DENOM=(1./3.)*TLAST*$4
        CHECK FOR DIVISION BY ZERO
    IF IDENOM .NE. 0.0) GO TO 60
    50 WRITE (3,1060)
    GO TO 70 LES 044
LES 043
    60 A = (4.13.)*(AREA-AREA1)*TLAST**3-2.*(AREA*TLAST-DIS+DISI)*TLAST**2 LES 045
    A = AIDENOM LES 046
    B=4.0*TLAST*(AREA*TLAST-DIS+DIS1)-2.0*(AREA-AREA1)*TLAST**2 LES 048
    B = B/DENOM
    WRITE (3,2040)
    WRITE (3,1070) NPASS,A,B
    70 IF (NPASS .GE. 2) GO TO 140
    LEAST SO FIT ACCEL(I)
    DO 80 I=1,NP1
    CORREC =A+B*TIME(I)
    80 RET(I) = ACCEL(I) - CORREC LES 059
    NNP1 = NPI - 8
    WRITE (3,1000)
    WRITE (3,2020)
    WRITE (3,1010) (TIME(I), RET(I), I= l,8)
    WRITE (3,1010) (TIME(I), RET(I), NNP1,NP1)
```

```
C
C LEAST SOUARED VALUES NOW IN RET ARRAY_ LES 066
C
    NPASS =3
C
    110 CONT INUE
        TEMP(1)=0.0
        DO 120 I=1,N
        DT = TIME(I+1)-TIME(1)
    120 TEMP(I+1)=TEMP(I)+(RET(I)+RET(I+1))*DT*0.5 LES 077
    LN=N-8
    WRITE (3,1020)
        WRITE (3,2000)
        WRITE (3,1010) (TIME(I), TEMP(I), I=1,8)
    WRITE (3,1010) (TIME(I), TEMP(I), LN,N) LES O82
C
C LES O84
C IT THIS POINT, THE TEMP ARRAY CONTAINS VELOCITY. LES ORS
C
    GO TO 30
    140 00 150 I= 1,NP1
    150 RET(I)=RET(I)-B
        WRITE (3,1040)
        WRITE (3,2010)
    WRITE (3,1010) (TIME(I), RET(I), I=1,8) LES 092
    WRITE (3,1010) (TIME(I), RET(I), I=1,8) LES 092
C
    IF (NPASS .NE. 2) RETURN LES 095
    DO 170 I=1,NP1 LES 096
    ACCEL(I) = RET(I) LES 097
    VEL(I)= TEMP(I)-A-B*TIME(I) LES O98
    170 CONTINUE
C
    WRITE (3,1050)
    WRITE (3,2000)
    WRITE (3,1010) (TIME(I), VEL(I), I=1,16)
```



```
1010 FORMAT((1X,8(F8.3,F9.3)))
```



```
1040 FORMAT ( }1\times,1,10X,48HCORRECTION TO ACCEL5 FROM LEASTSOUARING VELOCI LES 107
    TY/I
1050 FORMAT (1X,/,10X,21HLEASTSOUARED VELOCITY/) LES 109
1060 FORMAT (//,10X,12HDENOM = ZERO/) LES 110
1070 FORMAT (1X,I6,2F12.4)
1080 FORMAT (1X,1,10X,29HLEAST SOUARING ROUTINE --N =,I5//)
1090 FORMAT (1X,2F10.3,I5,2F10.3) LES 113
2000 FORMAT (5x,4HTIME, 6X, 3HVEL)
2010 FORMAT (5X,4HTIME,4X,5HACCEL) LES 115
2020 FORMAT (5X,4HTIME,4X,5HACCEL) LES 116
2030 FORMAT ( }1X,1,6X,3HDIS,7X,4HAREA, 4X, 1HN,5X,5HTLAST, 3X,9HTIME(N+1)) LES 117
```



```
    RETURN
LES 085
    LES 087
    LES 088
    WRITE (3,1010) (TIME(I), RET(I), NNP1,NP1) LES 093
C INTEGRATE TO GET VELOCITY.
    LEAST SOUARED VALUES NOW IN RET ARRAY. LES 067
    LES 068
    LES 069
NPASS = 3 1, LES OE9
    LES 071
    LES 072
    LES 073
    OO 120I=1,N LES 075
    LES 076
    LES 078
C C THIS POINT, THE TEMP ARRAY CONTAINS VELOCITY.
    CONTINUE
    LES 099
    LES 100
    LLES 101
LES 102
LES 103
LES 104
    LES 108
LES 110
N080 FORMAT LES 111
LES 112
LES 113
LES 114
END LES 120
LES 119
```

SUBROUTINE INTERP (DELT,N2, NPASS, ENTER,EXIT, NEWWAY)
INT 001
SUBROUTINE INTERP (OELT,N2,
IMPLICIT REAL*4 $(A-H, O-Z)$
$\begin{array}{ll}C \\ C & \text { DATA TO BE INTERPOLATED IS ENTERED TO SUBROUTINE VIA ARRAY ENTER. INT OOS } \\ \text { C OLI }\end{array}$
C DATA TO BE INTERPOLATED IS ENTERED TO SUBROUTINE VIA ARRAY ENTER. INT OO3
DURING INTERPOLATION, IT IS TEMPORARILY STORED IN THE SECOND INT 004
$\triangle R R A Y$ OF COMMON AND MUST BE TRANSFERRED BACK TO THE PROPER ARRAY INT OOS
AFTER IT LEAVES THE SUBROUTINE.
INT 006
$\begin{array}{ll}\text { INT } & 006 \\ \text { INT } & 007\end{array}$

D-21

```
    DIMENSION ENTER(300), EXIT(3000)
C
    N=N2*10+1
    WRITE (3,1020) N
C
    LL=1
    NN=N2+1
    ATIME = 0.0
    DO 30 I=2,NN
    DIFF = (ENTER(I)-ENTER(I-1)//0.2
    TIMEI = (I-1)*0.2
    TIMEM1 = TIMEI-0.2
    DO 20 L=LL,N
    IF (ATIME .GE. TIMEI) GO TO }3
    IFINEWWAY .EQ. 1I GO TO 10
    IF (NPASS .EQ. 1 .AND. TIMEI .GT. ATIME) ACCEL(L)=ACCEL(L)-DIFF
    10 EXIT(L)=ENTER(I-1) +(ENTER(I)-ENTER(I-1))*(ATIME-TIMEMI)/(TIMEI -
    1 TIMEM1)
    20 ATIME = L*DELT
    30 LL=L
        EXIT(N)=ENTER(NN)
        IF(NEWWAY . EQ. 1) GO TO 40
        ACCEL(N) = ACCEL(N) - DIFF
        LN=N-8
    40 WRITE (3,1000)
    WRITE (3,1010) (EXIT(I), I= 1,8)
    WRITE (3,1010) (EXIT(I), I=LN,N)
C
```



```
1010 FORMAT (16(FB.3))
1020 FORMAT ( }1\textrm{X},1,10X,26HINTERPQLATING ROUTINE - N=,I5//
    RETURN
    END
```

 INT 009
 HOL 001
 SUBROUTINE HOLWAY(NO2)
 HOL 001
 IMPLICIT REAL*4 (A-H,O-Z)
 HOLLOWAY RUNNING MEAN FILTER
 THIS SUBROUTINE TAKES THE AVERAGE OF 19 POINTS AND REPLACES THE
 TENTH (OR MIDPOINT OF THE WINDOW WIDTH) POINT WITH THAT VALUE
 COMMON ACCEL2 (5500), ATEMP (5500), TITLE (20), ACCEL5 (3000) , D(3000),
 1LAST
 \(W W=W I N D O W\) WIDTH
 \(W W=19\).
 \(N=N 02\)
 WRITE \((3,1020) \mathrm{N}\)
 C
C
C
THE ATEMP ARRAY IS USED HERE AS A TEMPORARY STORAGE ARRAY
$J=(W W+1.0) / 2.0$
IF(J.GT.N) J = N
$W W=2.0 * F L O A T(J)-1.0$
DO $50 \mathrm{LL}=1, \mathrm{~N}$
$\triangle \operatorname{TEMP}(L L)=0.0$
$I=0$
$D D 20 \quad M M=1, J$
$K K=L L+M M-1$
IF (KK .LE.N) GO TO 20
$10 \mathrm{I}=\mathrm{I}+1$
$K K=N-I$
20 ATEMP(LL) = ATEMP(LL) + ACCEL $2(K K)$
INT 010
INT 011
INT 012
INT 013
INT 014
INT 015
INT 015
INT 016
INT 017
INT 018
INT 019
INT 020
INT 021
INT 022
INT 023
INT 024
INT 025
INT 026
INT 027
INT 028
INT 029
INT 030
INT 031
INT 032
INT 033
INT 034
INT 035
INT 036
INT 037
INT 038
INT 039
INT 040
INT 041


```
            I = 1 HOL 030
            00 40 MM=2,J HOL 031
            KK=LL-MM+1 H0L O32
            IF (KK .GT. O) GO TO 40
        30 I = I +1
            KK=I
        40 ATEMP(LL)=ATEMP(LL)+ACCEL2(KK)
    50 ATEMP(LL) = ATEMP(LL)/WW
            WRITE (3,1000)
            WRITE (3,1010) (ATEMP(LL),LL=1,N)
C
C
REPLACE FILTERED DATA INTO ACCEL ARRAY
    00 60 I=1,N
    ACCELZ(I) = ATEMP(I)
    60 ATEMP(I)=(I-1)*0.02
C
    1000 FORMAT ( }1\times,1,10X,25HACCEL FROM HOLOWAY FILTER/)
    1010 FORMAT (1X,13F10.3)
    1020 FORMAT (1X,/,10X,34HHOLLOWAY RUNNING MEAN FILTER - N =,I5//)
        RETURN
        END
    ORM 001
    SUBROUTINE ORMSBY (ISYM,FSUBC,FSUBT,DELT,AENTER,NSHORT)
    IMPLICIT REAL*4 (A-H,O-Z)
ORMSBY FILTER
    SUBROUTINE ORMSBY ACTS AS A LOW PASS FILTER FILTERING OUT ALL
        FREQUENCIES GREATER THAN "FSUBT" CPS. A LOW PASS FILTER ALLOWS
        LOW FREQUENCIES TO PASS THROUGH WHILE FILTERING OUT THE HIGHER
        FREQUENCIES OUE TO ACCELOROMETER AND OIGITIZATION ERRORS
        UNFILTERED DATA IS CONVEYED VIA AENTER AS A PARAMETER OF ORMSBY,
        FILTERED DATA RETURNS VIA ATEMP ARRAY IN COMMON
    COMMON ACCEL(5500),ATEMP(5500),TITLE(20),VEL(3000),DISP(3000),LAST
    COMMON /ORMS/ H(275),NN
    ORM 013
    DIMENSION AENTER(5500) ORM O14
        N IS THE NUMBER OF POINTS IN ACCELOGRAM TO BE FILTERED.
        NN IS THE NUMBER OF FILTER WEIGHTS IN EACH HALF OF FILTER.
        2*NN+1 IS THE TOTAL NUMBER OF FILTER WEIGHTS.
    WRITE (3,1000) ISYM
    N = (FLOAT(LAST+2)/100.0)/DELT
    IF (DELT.EQ. 0.2) N=N+1
ALS = ABS(FSUBC-FSUBT)
WRITE (3,1020) FSUBC,FSUBT, ALS,DELT
ALR = DELT*(ABS(FSUBC-FSUBT))
NN=1.0/ALR
NNP1 = NN+1
IF (NN,GT.N) NN=N
C
WRITE (3,1070) N
WRITE (3,1090) NN
PI=3.1415926535
ALC=FSUBC*DELT
ALT=ALC+ALR
```


$$
\mathrm{D}-24
$$

```
1030 FORMAT (1X,/,10X,21HORMSBY FILTER WEIGHTS/) ORM 105
1040 FORMAT (1X,8F10.6)
1048 FORMAT ( }1\times,1,10X,3OHORMSBY FILTERED DATA AT . 1 SEC/)
1050 FORMAT (1X,/,10X,3OHORMSBY FILTERED DATA AT . 2 SEC/)
1060 FORMAT((1X,4(2F10.3)))
1070 FORMAT( }1X,1,10X,27HORMSBY FILTER ROUTINE - N =, I5 //)
1080 FORMAT (1X,//,10X,24HSUM OF ORMSBY WEIGHTS IS,E12.5//)
1090 FORMAT (/, 10X, 3HTHE,I 5,48HFILTER WEIGHTS CENTER AND RIGHT OF CENTE
. FORMAT (/,10X, 3HTHE,I 5,48HFILTER WEIGHTS CENTER AND RIGHT OF CENTE
    RETURN
    END
ORM 106
ORM 107
ORM 108
ORM 109
ORM 110
ORM 111
ORM 112
ORM 113
ORM 114
ORM 115
```

 SUBROUTINE HORIZ (NPASS)
 HOR 001
IMPLICIT REAL*4 (A-H,0-Z)
C THIS SUBROUTINE REPLACES THE CURRENT HORIZONTAL RASELINE WITH A
C NEW HORIZONTAL BASELINE SUCH THAT THE AREA UNDER THE ACCELERATION
C
C
CURVE IS ZERO.
COMMON ACCEL(5500),TIME(5500),TITLE(20), RET(3000), TEMP (3000),LAST
C
C
C
C
IF (NPASS .EQ. 21 GO TO 50
IF (NPASS •EO. 5) GO TO 70
IF (NPASS EO. 6) GO TO 90
$N=$ LAST/2
$D T=0.02$
C
C
C
AREA $=0.0$
10 AREA $=\operatorname{AREA}+(\operatorname{TEMP}(I)+\operatorname{TEMP}(I+1)) \neq D T / 2.0$
$N P 1=N+1$
CORREC $=A R E A / T I M E(N P 1)$
20 WRITE $(3,1020)$ AREA
WRITE $(3,1030)$ CORREC
C
DO $30 \mathrm{I}=1$, NP 1
RET(I) = $A C C E L(I)$ - CORREC
30 ACCEL(I) $=$ RET(I)
LLAST $=$ LAST - 8
WRITE $(3,1060)$
WRITE $(3,1040)$
WRITE $(3,1010)$ (TIME(I), RET(I), $I=1,8)$
WRITE $(3,1010)$ (TIME(I), RET(I), I =LLAST,LAST)
HOR 002
DO $10 \quad \mathrm{I}=1, \mathrm{~N}$
HOR 009
HOR 003
HOR 004
HOR 005
HOR 010
HOR 011
HOR 012
HOR 013
HOR 014
HOR 015
HOR 016
HOR 017
HOR 018
HOR 019
HOR 020
HOR 021
HOR 022
HOR 023
HOR 024
HOR 025
HOR 026
HOR 026
HOR 027
$\begin{array}{ll}\text { HOR } 028 \\ \text { HOR } & 029\end{array}$
HOR 029
HOR 030
HOR 031
HOR 032
HOR 033
HOR 034
IF (NPASS •EQ. 5) GO TO 68
$\begin{array}{ll}\text { HOR } & 036 \\ \text { HOR } & 037\end{array}$
C
C
C INTEGRATE TO GET VELOCITY
$\operatorname{TEMP}(1)=0.0$
C
DO $40 \quad I=1, N$
$D T=T I M E(I+1)-T I M E(I)$
40 TEMP(I+1) = TEMP(I) + (RET(I) + RET(I+1))*DT*0.5
WRITE $(3,1070)$
WRITE $(3,1050)$
WRITE $(3,1010)$ (TIME(I), TEMP(I), I $=1,8)$
WRITE $(3,1010)$ (TIME(I), TEMP(I), I =LLAST,LAST)
C
RETURN
HOR 038
HOR 039
HOR 040
HOR 041
HOR 042
HOR 043
HOR 044
50 CONTINUE
HOR 045
WRITE $(3,1010)$ (TIME(I). TEMP(I), IFLLAST,LAST) HOR O47
RETURN $-\quad$ HR 48
HOR 050
HOR 051
$N=$ LAST/2


```
        RET(1)=0.0 HOR 053
        DO 60 I=1,N
    HOR
    DT = TIME(I+1) - TIME(I)
    HOR 055
    60 RET(I+1) = RET(I) + (ACCEL(I) + ACCEL(I+1))*DT*0.5
        WRITE (3,1070)
        WRITE (3,1050)
        WRITE (3,1010) (TIME(I), RET(I), I=1,8
        WRITE (3,1010) (TIME(I), RET(I), I=LLAST,LAST)
C
    6 8 ~ R E T U R N
    70 N = LAST
        DT = 0.01
        AREA = 0.0
        DO 80 I=1,N
        80 AREA = AREA + (ACCEL(I) + ACCEL(I+1))*DT/2.0
        CORREC = AREA/TIME(N)
        GO TO 20
    90 N = LAST/2
        DT = 0.02
        AREA = 0.0
        DO 100 I=1,N
    100 AREA = AREA + (ACCEL(I) + ACCEL(I+1))*DT/2.0
        CORREC = AREA/TIME(N)
        GO TO 20
C
    1010 FORMAT((1X,8(F8.3,F9.3)))
    1020 FORMAT (1X,/,10X,9H AREA = ,F10.6)
    1030 FORMAT (10X,9HCORREC = ,F10.6)
    1040 FORMAT (5X,4HTIME,4X,5HACCEL)
    1050 FORMAT (5X,4HTIME,6X,3HVEL)
    1060 FORMAT (1X,1,10X,42HACCEL ADJUSTED FOR ZERO VELOCITY VIA HORIZI)
    1070 FORMAT (1X,/,10X,29HINTEGRATED VELOCITY VIA HORIZ/)
        END
        SUBROUTINE PLTDAT (NPLOT,DELT,XRED,YRED,NOZ)
        PLT 001
        IMPLICIT REAL*4 (A-H,O-Z)
c
C THIS SUBROUTINE PLOTS THE FILTERED GROUND ACCELERATION, PLT OOZ
PLT 002
    VELOCITY AND DISPLACEMENT FOR THE DIGITIZED SEISMIC DATA.
    IN ADDITION, THE ORMSBY LOW-PASS FILTER IS SHOWN.
        COMMON ACCEL8(5500),TIME(5500),TITLE(20),VEL4(3000),DISP(3000),
        1LAST
            COMMON/PLTBUF/IBUF(1000)
            COMMON /ORMS/ WTS(275),NN
C
        N = NO2 - 1
        WRITE (3,4000) N
C
    LAST = N
    DO 6 I=1,N
        6 TIME(I)=(I-1)*DELT
C
    SIZE = 3.0
        XLEN = 12.0
C
    CALL PLOTSIIBUF,1000,5)
    IF (XRED .EQ. 1.0 .AND. YRED .EQ. 1.0) GO TO 8
    CALL SETFACT (XRED,YRED)
        8 IF (NPLOT.EQ. 4) GO TO 55
        CALL PLOT (0.,-11.,-3)
    11 CALL SCALE (TIME,XLEN,LAST,1)
    Call SCALE (ACCELb,SIZE,LAST,1)
C
C PLOT ACCELERATION
PLT 008
PLT 009
PLT 010
PLT 011
PLT 012
PLT O13
PLT 014
PLT 015
PLT 016
PLT 017
PLT 018
PLT 019
PLT 021
PLT 022
PLT }02
PLT 024
PLT 027
PLT 028
PLT 029
```

```
        COR = 10.5-SIZE
    CALL PLOT (0.0,COR,-3)
    CALL AXIS (0.0,3.0," ",1,XLEN,0.,TIME(LAST+1),TIME(LAST+2))
    CALL AXIS (0.0,0.0,"GRD ACCEL IN G" ,14,SIZE,90.,ACCEL8(LAST+1),
    1 ACCEL8(LAST+2))
        CALL LINE (TIME,ACCELB,LAST,1,0,0) PLT 035
        BSLINE = ABS(ACCEL8(LAST+1)/ACCEL8(LAST+2)) PLT 036
        CALL PLOT (XLEN,BSLINE,3)
        CALL PLOT (0.0,BSLINE,2)
        CALL SYM8OL (0.0,-0.5,0.25,TITLE,0.,80)
        CALL PLOT (0.,-9.0,-3)
        IF (NPLOT .EQ. 1) GO TO 999
c pLOT VELOCITY
    SIZE = (9.0-SIZE)/2.0
    COR = SIZE + 1.0
    CALL PLOT (O.,COR,-3)
    CALL SCALE (VEL4,SIZE,LAST,1)
    DIVY = 10.0
    CALL AXIS (0.0,0.0,"VEL. IN CM/SEC." ,15,SIZE,90.,VEL4(LAST+1),
        1 VEL4,LAST+2)I
            CALL LINE (TIME,VEL4,LAST,1,0,0)
            8SLINE = ABS(VEL4(LAST+1)/VEL4(LAST+2))
            CALL PLOT (XLEN,8SLINE,3)
            CALL PLOT (0.0,BSLINE,2)
            CALL PLOT (0.,-5.0,-3)
    PLOT DISPLACEMENT
    CALL PLOT (0.,0.5,-3)
    CALL SCALE (DISP,SIZE,LAST,l)
    CALL AXIS (0.0,0.0,"TIME IN SECONDS" ,-15,XLEN,O.,TIME(LAST+1),
    1 TIME(LAST+2))
    DIVY = 10.0
PLT 064
    CALL AXIS (0.0,0.0,"DISP. IN CM.",12,SIZE,90.,DISP(LAST+1),DISP(L
        1AST+2)|
            CALL LINE (TIME, DISP,LAST,1,0,0) PLT 067
            8SLINE = ABS(DISP(LAST+1)/DISP(LAST+2))
            CALL PLOT (XLEN,BSLINE,3)
            CALL PLOT (0.0,8SLINE,2)
            CALL PLOT (0.,-0.5,-3)
            IF (NPLOT.EO. 2) GO TO 999
C
    PLOT ACCEL5
    55 START5 = XLEN + 2.0
    CALL PLOT (START5,5.0,-3)
            CALL SCALE (TIME,XLEN,NN,I) .
            CALL AXIS (0.0,0.0,"TIME IN SECONDS", -15,XLEN,0.,TIME(NN+1),
        1 TIME(NN+2))
            CALL SCALE (WTS,5.,NN,1)
            CALL AXIS (0.0,0.0,"FILTER WEIGHTS" ,14,5.,90.,WTS(NN+1),WTS(NN+2)
        1)
            CALL LINE (TIME,WTS,NN,1,0,0)
            CALL SYMBOL (2.0,5.0,0.25,TITLE,0.,80)
            CALL SYM8OL (2.0,-2.0,0.25,"ORMSBY FILTER" ,0.0,13)
    999 CONTINUE
            CALL PLOT(20.0,0.0,999)
C
    4000 FORMAT (1X,/,10X,14HPLOT DATA N E,I6)
    RETURN
    END
```

PLT 030
PLT 031

PLT
PLT 037
PLT 038
PLT 039
PLT 040
PLT 041
PLT 042
PLT 043
PLT 044
PLT 045
PLT 046
PLT 047
PLT 049

PLT 052
PLT. 053
PLT 054
PLT 055
PLT 056
PLT 057
PLT 058
PLT 059
PLT 060

PLT 064

PLT 067
PLT 068
PLT 069
PLT 070
PLT 071
PLT 072
PLT 073
PLT 074
PLT 075
PLT 076
PLT 077

PLT 084
PLT 085
PLT 087
PLT 089
PLT 090
PLT 091
PLT 092

To compile the program for the CDC 6400 machine, the unlabelled statements (those not containing a name and number in columns 73 through 80) should be removed and the following statements'inserted in their sequence locations.

	PROGRAM DAISMA (INPUT $=129$, OUTPUT $=129, \mathrm{PLOT}, \mathrm{PUNCH}, \mathrm{TAPE1}=\mathrm{INPUT}$,	DAI	001
	- T APE3 $=$ OUTPUT, TAPE5 = PLOT, TAPE7)	DAI	002
	COMMON ACCEL(5500), TIME(5500), TITLE(8), VEL (3000), DISP(3000), LAST	DAI	036
	COMMON ACCEL (5500). TIME (5500), TITLE 8), VEL (3000), DISP(3000), LAST	PH1	008
10	READ (1,2050) (TITLE(I), $I=1,8)$	PH1	014
	IF (EOF(1)) 20,30	PH1	015
	CALL REMARK (31HNORMAL TERMINATION, END OF DATA)	PH1	017
30	WRITE (3,2060) (TITLE(I), $\mathrm{I}=1,8)$	PH1	019
	IF (NPUNCH.EQ. 1 . OR. NPUNCH . EQ. 21 PUNCH 2050, (TITLE(I), $1=1,8)$	PH1	057
	IF (NT .GE. 29981 60,70	PH1	071
70	READ (7,2040) TIME(NT), ACCEL(NT)	PH1	074
	IF(EQF(7)) 80,50	PH1	075
	IF (NT.GE. 749) 90,100	PH1	082
100	READ (1, 1000) (TIME(NT*4*I), ACCEL(NT*4+I), $I=1,4)$	PH1	086
	IF(EOF(1)) 110,85	PH1	087
		PH1	123
	IF(EOF(1)) 190,190	PHI	124
380	CALL INITIAL (0,5,0.3,0,0)	PH1	228
	CALL AXIS $10.00 .0,19$ HREL. TIME IN COUNTS, 19, XLEN, $0 .$, XMIN, SCALX,	PH1	234
	. 20.01	PH1	235
	CALL AXIS (0., 0.0,21HREL. ACCEL. IN COUNTS, $21, S I Z E, 90 ., Y M I N, S C A L Y$,	PH1	236
	.10.1	PH1	237
	IF (LAST .GT. 2001400,410	PH1	239
440	CALL ENDPLT	PH1	262
2050	FORMAT (BAlO)	PH1	2P7
2060	FORMAT (1H,8A10,1/)	PH1	288


```
    COMMON ACCEL(5500), TIME(5500),TITLE(8),VEL(3000),DISP(3000),LAST PH2 016
    READ(1,1090) (TITLE(I), I=1,8) PH2 029
    WRITE (3,2000) (TITLE(I), I=1,8) PH2 030
```



```
1090 FORMAT (8A10) PH2 490
2000 FORMAT (1H,8A10,//)
PH2 491
```

COMMON ACCEL(5500), TIME (5500), TITLE(8), VEL(3000), DISP(3000), LAST	RED
READ(1, 1000)(TIME(NT* $4+I), \triangle C C E L(N T * ヶ+I), I=1,4)$	RFD
IF(EOF (1) 20,10	RED
IF (LAST.GT. 2998130,40	RED
IF (XN.GT. 54.95$) 50,60$	RED
CALL REMARK (28HINPUT DATA OVERLOADS PROGRAM)	RED
COMMON $\triangle C C E L(5500)$, TIME 5500$)$, TITLE(8), VEL (3000), DISP(3000), LAST	DAT

COMMON $\triangle C C E L(5500)$, TEMP (5500), TITLE(8),VEL(3000), TIME(3000),LAST EOL OOB
COMMON ACCEL(5500), TIME(5500), TITLE(8),VEL(3000), TEMP(3000),LAST
IF (TIME(I) GE. $0.0120,10$ LES 017
IF IDENOM . EO. $0.0150,60$ LES 042
COMMON ACCEL(5500), TIME(5500),TITLE(8),VEL(3000),DISP(3000),LAST INT OO8
COMMON ACCEL2(5500), \triangle TEMP (5500), TITLE(8), \triangle CCEL5(3000), D(3000), LAST HOL OO8
IF (KK . GT. N) 10,20 HOL 026
IF (KK .LE. O) 30,40 HOL 033
COMMON $\triangle C C E L(5500), \triangle T E M P(5500), T I T L E(8)$,VEL(3000), DISP(3000),LAST ORM 012
IF (KK.GT. N) $40,50 \quad$ ORM 072
IF (KK .LE O) 80,90 ORM 086
COMMON ACCEL(5500). TIME(5500),TITLE(8),RET(3000),TEMP(3000),LAST HOR 006
D-31

```
    COMMON ACCELB(5500),TIME(5500),TITLE(8),VEL4(3000),DISP(3000),LAST PLT OOT
    CALL INITIAL (0,5,0,3,0,0) PLT 02O
1 1 ~ C A L L ~ S C A L E ~ ( T I M E , X L E N , L A S T , 1 , 2 0 . 0 ) ~ P L T ~ 0 2 5 ~
    CALL SCALE (ACCEL8,SIZE,LAST,1,10.) PLT 026
    CALL AXIS (0.0,3.0,1H,1,XLEN,0.,TIME(LAST+1),TIME(LAST+2),10.) PLT 032
    CALL AXIS (0.0,0.0.14HGRD ACCEL IN G, 14,SIZE, 90.,ACCELBILAST+1), PLT 033
    1 ACCELB(LAST+2),10.0) PLT 034
    CALL SCALE (VEL4,SIZE,LAST,1,10.0) PLT 048
    CALL AXIS (0.0,0.0,15HVEL. IN CM/SEC., 15,SIZE, 90.,VEL4(LAST+1), PLT 050
    1 VEL4(LAST+2),DIVY) PLT 051
    CALL SCALE (DISP,SIZE,LAST,1,10.1 PLT 061
    CALL AXIS (0.0,0.0,15HTIME IN SECONDS,-15,XLEN,0.,TIME(LAST+1), PLT 062
    1 TIME(LAST+2),10.0) PLT 063
    CALL AXIS (0.0,0.0,12HDISP. IN CM., 12,SIZE, 90.,DISP(LAST+1),DISP PLT 065
    1(LAST+2),DIVY) PLT 066
    CALL SCALE (TIME,XLEN,NN,1,10.) PLT O78
    CALL AXIS (00.0,0.0,15HTIME IN SECONDS,-15,XLEN,0.,TIME(NN+1), PLT O79
    1 TIME(NN+2),10.0) PLT 080
    CALL SCALE (WTS,5.,NN,1,10.) PLT 081
    CALL AXIS (0.0,0.0.14HFILTER WEIGHTS, 14,5., 90.,WTS(NN+1),WTS(NN+ PLT OB2
121.10.01 PLT 083
    CALL SYMBOL (2.0,-2.0,0.25,13HORMSBY FILTER,0.0,13) PLT O&6
    CALL ENDPLT
    PLT 088
```

If library program IMSL is available on the CDC computer then the addition of the following statements will produce a printer plot similar to Figure 51-a.

```
OATA PTITLE/160*" "/ EQL O1O
```

CALL USPLH (TEMP, ACCEL,M,1,1,1,TITLE,ITEMP,IER) EQL 039
COMMON /DRAW/ ITEMP(5151),PTITLE(160) LFS 008
DATA PTITLE/160*" "/
LES 009
CALL USPLH (TIME,RET,NP1,1,1,1,TITLE,ITEMP,IER) LES 065
CALL USPLH (TIME,TEMP,N,1,1,1,TITLE,ITEMP,IER) LES 083
D-32


```
//MIKLOF JOB T-675--MIKLOF,'MIKLOF',
// CLASS=A
// EXEC PROC=UT6FLG,PARM.FORT=NODECK
//FORT.SYSIN DD *
```

SOURCE DECK
//G0.FT03F001 dd sysout
//G0.FT03F001 DD SYSOUT=A,DCB=(RECFM=VBA,BLKSIZE=2000)
//FT01F001 DD *
//FT05F001 DD SYSOUT=B,DCB=(FUNC=I)
//FT02F001 DD SYSOUT $=8$
//FT06F001 DD DSN=INPUT,UNIT=TAPE,DISP=0LD,LABEL=(2,BLP),
// $V O L=S E R=I N P U T, D C B=(R E C F M=F, L R E C L=5040, B L K S I Z E=5040)$
//FT06F002 DD DSN=INPUT, UNIT=AFF=FT06F001,DISP=0LD,LABEL=(3,BLP),
// $V O L=S E R=I N P U T, D C B=(R E C F M=F, L R E C L=5040, B L K S I Z E=5040)$
//FT07F001 DD DSN=\&\&DISK07,UNIT=SYSDA,DISP=(,DELETE),
// SPACE $=(C Y L, 5)$

CONTROL STATEMENTS FOR COMPILING DAISMA ON CDC 6400 COMPUTER

```
JOBCARD-NAME, BN
    ,CM117000,T20.
FTN (B=PUNCHB,OPT=1)
79 (ALL IN COLUMN ONE)
```

 OBJECT DECK
 6789 (ALL IN COLUMN ONE)

```
            CONTROL STATEMENTS FOR DATA INPUT CDC 6400
JOBCARD-NAME, BN
```

\qquad

``` , CM112000,T70.
INPUT.
7 8 9 ~ ( A L L ~ I N ~ C O L U M N N ~ O N E )
        IF AN ISML LIBRARY PROGRAM IS AVAILABLE THEN
        USE THE FOLLOWING CONTROL STATEMENTS TO
            PRODUCE A PRINTER PLOT
JOBCARD-NAME, BN
```

\qquad

``` , CM117000,T70.
ATTACH(IMSL)
LDSET(LIB=IMSL)
INPUT.
```


BINARY DECK

789 (ALL IN COLUMN ONE)

DATA DECK

6789 (ALL IN COLUMN ONE)

APPENDIX E
 TRAK 010 SUBROUTINE

1.1 Introduction

TRAK 010, written by Steve Kutoroff of Watershed Research, is a specialized subroutine that reads and analyzes data digitized on an Electrak digitizing machine.* The program is specialized in that it is for use only on data that has been taken by this type of machine. The digitized data is recorded on a 7-track magnetic tape in coded form and must be transformed into a general format so that it can be used by the final stages of processing in programs PHASE1 and PHASE2 for correction and integration.

TRAK 010 is written in the Fortran IV programing language and utilizes the fastest commands possible to read and analyze the data, i.e., buffering, shifting, and masking. In general, the shift and mask functions are Fortran intrinsic functions similar to $A B S$ and $S Q R T$ that return a single value. The function SHIFT (A1,A2) commands the sixty bits of word A1 to move left circular A2 number of bit positions. If A2 is negative, the shift will move right, drop A2 number of bits off the end, and replace the first A2 bit positions with that of the first bit position (the sign).

The function MASK (Al) produces a word of 60 bits with ones in the leftmost Al bit positions, and zero filled to the right. Masking operations are used in conjunction with SHIFT functions in the TRAK 010 subroutine to analyze the characters of a computer word.

[^18]1.3 Subroutine TRAK 010

Each record is output on a magnetic tape as a string of 36 continuous characters and appears as follows:

CCCCSXXXXXXSYYYYYFIXED-ADDRESS---CICI

where the CCCC represents a counter of the number of characters remaining in a block, the S represents a sign ("+" or "-"), the XXXXX is five digits of the X coordinate followed by another sign, and YYYYY is the five digits of the Y coordinate. The characters that follow give certain information about the data point and are explained in the section under Electrak Digitizing. Since these last 20 characters are not necessary in defining the location of the data point, they are bypassed in the TRAK 010 subroutine.

The usable information of the total 36 character record is the first 16 characters, i.e., the counter value, the X coordinate and the Y coordinate. Basically, the TRAK 010 subroutine reads this continuous output of characters and searches for a pair of signs (+ or -) that are six characters apart. When
it finds this target pattern, it checks the characters four to the left of the first sign and five to the right of the second sign. If all of these characters (except of course the signs) are decimal numbers, they are output on Tape 7 as a valid data point. This process continues until an end-of-file (EOF) tape mark is encountered indicating a completely digitized accelerogram component.

1.4 How the Subprogram Works

Basically TRAK 010 has four major sections. These are:

1. Buffer in 1000 words (10,000 characters) into memory (in the array BUFS) and check the status of this operation.
2. Locate a target pattern (two signs six characters apart).
3. Change the format of this target pattern to prepare it for. testing and output.
4. Test the target pattern and output valid data points.

Section 1

The BUFFER-IN statement reads the first 1000 characters into the BUFS array. The UNIT statement is a utility subprogram which is used to check the status of the previous BUFFER-IN operation. It returns: (A) a -1 if no end-of-file or parity error is encountered, (B) a 0 if an end-of-file is encountered, and (C) a +1 if a parity error is encountered. A parity error is an error of nonagreement between the bit located in the first track (of a seven track tape) and the number of ones in the remaining six tracks. Since the Electrak digitizer records in "even" parity, it places a one in the first track if there is an even number: of ones in the remaining six tracks (or leaves the first track blank if there is an odd number of ones in the remaining six tracks). Parity
error detection gives a 50% chance of detecting an error in the recording of information on the tape.

If a -1 is returned by the UNIT function, the utility subprogram LENGTHX is called and this returns the number of 60 bit words read (SIZE) and the number of unused bits in the last word read (WASTE). This information is retained and used later in the TRAK 010 subroutine.

If a zero is returned by the UNIT function, an end-of-file has been encountered in the BUFFER-IN operation indicating the end of data on the tape and control reverts back to the main program PHASE1.

If $a+1$ is returned by UNIT indicating a parity error, a remark is placed in the day file and the program continues.

Section 2

This section scans the current word in the BUFS array character by character searching for a pair of signs six characters apart. This task is performed by the SHIFT function. In the statement "CHAR = SHIFT(WD, N).AND. 77B", the word "CHAR" is replaced by the right side of the "=" sign. That is, SHIFT(WD,N) moves the 60 bits of the word "WD" (the first 10 characters of data) left circular N number of bit positions. For example, if "WD" contained the characters 1A2B3C4+DE, the bits for "WD" would look like this:

Character	1	A	2	B	3	C	4
Binary NO.	34	01	35	02	36	03	37
Bit	011100	000001	011101	000010	011110	000011	011111
Character	+	D	E				
Binary NO.	45	04	05				
Bit	100101	000100	000101				

A shift of "WD", N ($N=6$ first time through the loop) bit positions left circular would look like this:

Character	A	2	B	3	C	4	+
Bit	000001	011101	000010	011110	000011	011111	100101
Character	D	E	1				
Bit	000100	000101	011100				

The "77B" is a binary number representing a 60 bit word and appears like this:

Binary NO.	00	00	00	00	00	00	00
Bit	000000	000000	000000	000000	000000	000000	000000
Binary NO.	00	00	77				
Bit	000000	000000	111111				

The ".AND." performs the logical bit by bit product of the two words SHIFT(WD,N) and 77B. The final result (i.e., contents of "CHAR") appear like this:

Binary NO.	00	00	00	00	00	00	00
Bit	000000	000000	000000	000000	000000	000000	000000
Binary NO.	00	00	34				
Bit	000000	000000	011100				

"CHAR" is now a one character word with the contents 34B. This binary number represents the character " 1 ". In the statement "IF (CHAR .NE. TARG1) GO TO 260", the contents of the word "CHAR" is compared to the contents of the word "TARG1" (where TARG1 represents a " + " sign). Since CHAR is not equal to TARG1 in our example, control proceeds to statement 非260 where it is compared to "TARG2". "TARG2" is a word that represents a "-" sign. Again, since in our example "CHAR" is not a "-" sign, control reverts back to
the beginning of the loop and the second character of "WD" (i.e., the "A") is tested to see if it is a " + " or a "-" sign. This process continues until a sign is found.

As soon as a sign is found, the statement function "FGET" is called. A statement function is a user-defined, single-statement computation which performs a specific computation whenever it is referenced. In the TRAK 010 subroutine, FGET utilizes logical arithmetic and the SHIFT function to change the character "]" to " + " or ";" to "-". (Recall this is necessary because the characters " + " and "-" recorded by the Electrak digitizer is read as a "]" and ";" by the CDC 6400 computer.)

This character change operation is performed in the following manner. In the statement function FGET(WD, N, V) $=$ (WD.A..N. SHIFT (77B, 60-N)) .OR. SHIFT(V,60-N) the dummy arguments WD, N, and V are replaced by the actual arguments in the referencing statement. For example, the referencing statement $\operatorname{BUFS}(\mathrm{J})=\operatorname{FGET}(\operatorname{BUFS}(\mathrm{J}), \mathrm{N}, 45 \mathrm{~B})$ " WD of the statement function is substituted for BUFS(J), N is substituted for N, and V is substituted for 45 B .

To illustrate this procedure, assume that the word "CHAR" contains the character "]". This is the Electrak's symbol for a " + " sign and must be changed to such before it can be output as usable data. "CHAR" is then compared to TARG1 ("]") and these two words are found to be equal. Therefore, the statement function "FGET" is referenced.

The word "WD" is replaced by the word BUFS(J) and appears like this:

1	A	2	B	3	C	4
011100	000001	011101	000010	011110	000011	011111
］	D	E				
110010	000100	000101				
7B is represented in bit form as：						
000000	000000	000000	000000	00000	000000	000000
000000	000000	111111				

SHIFT（77B， $60-\mathrm{N}$ ）shifts the 77 B twelve bit positions to the left ．A．（since N is now equal to 48 ，i．e．，from loop $⿰ ⿰ 三 丨 ⿰ 丨 三 一 350, ~ N=$ character location $\times 6$ or $N=8 \times 6=48$ ）and appears as：
$0000000000000000000000000 \quad 000000 \quad 000000 \quad 000000$ 111111000000000000
．N．is a logical operator which simply changes each bit in a word to what it is not，thus ．N．SHIFT（77B，60－N）yields：
$111111111111 \quad 111111 \quad 111111 \quad 111111 \quad 111111 \quad 111111$ 000000111111111111

The ．A．performs the logical product of the two 60 bit words BUFS（J）and ．N．SHIFT（77B，60－N）which gives：

$$
\begin{array}{lllllll}
011100 & 000001 & 011101 & 000010 & 011110 & 000011 & 011111 \\
000000 & 000100 & 000101 & & & &
\end{array}
$$

The word＂V＂（which has been replaced by 45B）looks like this： ．OR．

$$
\begin{array}{lllllll}
000000 & 000000 & 000000 & 000000 & 000000 & 000000 & 000000
\end{array}
$$ $000000 \quad 000000100101$

SHIFT（V，60－N）shifts V twelve bit positions left which yields： $0000000000000000000000000000000 \quad 000000 \quad 000000$ 100101000000000000

$$
\mathrm{E}-7
$$

.OR. is a logical operator which yields a " 1 " in that bit position if either word contains a " 1 " in the corresponding bit position.

```
thus: 011100 000001 011101 000010 011110 000011 011111
    100101 000100 000101
```

Thus the word returned by FGET is a duplicate of the previous word BUFS(J) except that the eighth character has been changed from "]" to "+".

Since a sign was found in the eighth character of the first word BUFS(J), $N=48$ (i.e., $6 \times 8=48$) and $J=1$, the variables "JJ" and "NN" are set equal to "J" (i.e., 1) and $N+36$ (i.e., $48+36=84$). Because NN is greater than 60 , JJ is set to $\mathrm{JJ}+1$ (i.e., 2) and NN is set to NN-60 or 24. This step prepares the subroutine to search in the second word of BUFS (the next 10 characters) for another sign (+ or -). Statement \#280 "CHAR2 = SHIFT (BUFS (JJ), N).AND. 77B" is similar to the first statement in the loop where it compares the fourth character of the second word (BUFS(JJ)) with a "+" and "-" sign. If a "+" or "-" sign is found in that character location, the target pattern has been found and these two words are tested in Section 3 for proper location of decimal characters, four left of the first sign and five right of the second sign.

If a second sign is not found six characters right of the first, control goes to statement $\# 1000$ where J is increased by one and tested to see if it exceeds the number of words in the first BUFS array (i.e., 1000). If so, the last six words in the first BUFS array are placed in the first six words of the second BUFS array. Otherwise, the sign searching loop continues to search for more valid target patterns.

Section 3

To arrive at this section, a target pattern has been found and the task is to analyze the sixteen characters to see if they contain decimal numbers. Assume, for example, that the first word BUFS(1) contain the characters "ABC1234+56" and the second word BUFS(2) contain the characters "789-09876Z". The first sign is the eighth character of BUFS(1); thus $\mathrm{N}=48$. The computed "GO TO" (following statement 非450) directs the test procedure to the appropriate testing statement. For our example, this would send control to statement 非490 (N/6 = $48 / 6=8$), the eighth statement number of the computed "GO TO".

In statement \#490, two words are defined, i.e., "WD1" and "WD2". Following the operations defining WD1, proceed as follows: MASK (N-30) - i.e., MASK (18) yields

111111111111111111000000000000000000000000 000000000000000000
.N.MASK (18) gives:

000000	000000	000000	111111	111111	111111	111111
111111	111111	111111				

WD, i.e., BUFS(1) yields:

Character	A	B	C	1	2	3	4
Binary NO.	01	02	03	34	35	36	37
Bit	000001	000010	000011	011100	011101	011110	011111
Character	+	5	6				
Binary NO.	45	40	41				
Bit	100101	100000	100001				
WD.A..N.MASK (18) yields:							
	000000	000000	000000	011100	011101	011110	011111
	100101	100000	100001				

	000000	000000	011100	011101	011110	011111	100101
	100000	100001	000000				
MASK (N-42), i.e., MASK (6) is:							
	111111	000000	000000	000000	000000	000000	000000
	000000	000000	000000				
$\operatorname{BUFS}(\mathrm{J}+1)$, i.e., BUFS (2) is:							
Character	er 7	8	9	-	0	9	8
Binary NO	NO. 42	43	44	45	33	44	43
Bit	100010	100011	100100	100101	011011	100100	100011
Character	er 7	6	Z				
Binary NO	NO. 42	41	32				
Bit	100010	100001	011010				
BUFS (J+1).AND.MASK (N-42) yields:							
	100010	000000	000000	000000	000000	000000	000000
	000000	000000	000000				
SHIFT (BUFS ($\mathrm{J}+1)$. AND . MASK ($\mathrm{N}-42$) , $\mathrm{N}-42$) yields:							
	000000	000000	000000	000000	000000	000000	000000
	000000	000000	100010				
Finally WD1 = SHIFT (WD.A..N.MASK (N-30), N-42).OR.SHIFT (BUFS (J+1)							
Bit	000000	000000	011100	011101	011110	011111	100101
Binary NO	NO. 00	00	34	35	36	37	45
Character	er	-	1	2	3	4	+
Bit	100000	100001	100010				
Binary NO	NO. 40	41	42				
Character	er 5	6	7				

Therefore the contents of "WD1" are "--1234+567" (the first twelve bits - two character positions - have no associated characters and are thus interpreted as blanks by the computer).

The next statement after $\$ 490$ isolates the second thru ninth characters of BUFS(2) (i.e., the "89-09876") in a similar manner and stores them in the last eight character locations of word "WD2". Thus "WD1" contains the counter number, the first sign, and three digits of the X coordinate. "WD2" contains the second sign and the five digits of the Y coordinate. The first two character positions of both words are blanks.

Section 4

In the last section of TRAK 010, the target pattern containing the alleged "valid" data is tested. This operation is implemented in loop 非540. The word "TEST" is defined as follows:
"WD1" is shifted left circular (first three character positions then one character at a time) and the logical product taken between each character (in binary) and 77B. This reduces the contents of "TEST" to one character in the last character position. In the word "TEST" for the above example, the binary form is 34 B which represents the character " 1 ". When $33 B^{\prime \prime}$ is deducted from $34 B$ the result is $1 B$. This value is tested to see if it lies between 0 and 13B. Since it does, it is either a sign or a decimal number, thus a valid character. This test continues for each character in the words "WD1" and "WD2". As long as these characters have binary numbers between 33B and 46B (the range of digits and signs), the loop will be completed normally and the contents of words "WD1" and "WD2" will be written on TAPE 7. If one of the binary numbers falls outside this range, it is not a
digit or sign and the test will be aborted．Control will then go to statement $⿰ ⿰ 三 丨 ⿰ 丨 三 800$ and no information will be written on TAPE 7.

Statement $\# 800$ commands the current word and the two adjacent words that have failed the sign－digit test to be printed out．This gives the user some information about that data point．If it is a significant point（e．g．，peak or valley of an accelerogram trace），he may decide to redigitize that area of the accelerogram or insert a missing digit or sign（if he can be certain of what it should be）．

The last part of the TRAK 010 subroutine，checks the value J to see if it has exceeded the size of the BUFS array．When the limit of the BUFS array is finally reached， control returns to statement $⿰ ⿰ 三 丨 ⿰ 丨 三 一 10$ where another 1000 words are read into memory．The whole process continues until an EOF mark is encountered on the tape．At this point，control returns to the main program PHASE1 where the data stored on TAPE 7 is read into memory．

> Lun. .

APPENDIX F

Program Opscan

1.1 IntroductionProgram OPSCAN (Optical Scanning) was used to retrievedigitized data placed on 7-track tape by a Perkin-Elmer Micro-densitometer. It is listed only for the CDC 6400 computerbecause the authors have no experience with its use on an IBMcomputer. The User's Instructions and program which followwere obtained from the Solar Division, Kitt Peak NationalObservatory. Only the first routine was changed to meet therequirements for accelerogram digitizing.
1.2 User's InstructionsIDENTIFICATION: Subroutines RUNPID, RUNPSC, RUNSCI, CONVERTREOFS
CONTRIBUTOR: San Carswell
DATED: November 5, 1973PURPOSE:
This set of subroutines is for reading andunpacking data from magnetic tape writtenby the PDS microdensitometer.
SUBROUTINE: RUNPID
USAGE :
To read and unpack the ID record at thebeginning of each file.
CALL RUNPID (NTAPE,IDETC)
Where:
NTAPE is the logical unit number of the mag.tape file holding the PDS data, and
IDETC is an integer array of at least 18words which will contain the file IDinformation on return from the sub-routine.

The routine will read one record from file NTAPE and if it encounters an End of File, or the record is not the correct length for an ID record, will return the IDETC array as zeros. Otherwise the record is unpacked into the array IDETC in the following way: IDETC Contents
Word(s) $1 \rightarrow 4=40$ character ID (CDC display code) 4A10
$5=\mathrm{DX}$ used for scan pattern (microns)
6 = DY used for scan pattern (microns)
7 = No of data points per scan
$8=$ No of scans requested
9 = Scan type (CDC display code, E, R or F, Al)
$10=$ Speed used for scan ($\operatorname{Max}=255$)
11 = Position of scan origin ($0=$ centre, $1,2,3,4$. corner)
12 = Starting corner of scan 1,2,3,4.
$13=$ No of mag tape records per scan

14 = Xtravel (microns) for one scan

15 = Ytravel (microns) requested
16 = No of points in each 'full' mag tape record

17 = X co-ordinate of scan origin
$18=\mathrm{Y}$ co-ordinate of scan origin All values except ID and scan type are returned as integers, ID and scan type are returned in CDC display code.

If any scans in a file are to be unpacked, then RUNPID must be called at the beginning of that file, as the ID is the first record within a file and contains information used by the 'scan unpack' routine.

For all these subroutines the mag. tape reading is done with 'Buffer In' statements, so that the buffer length in the user's 'program' statement for file NTAPE should be the minimum length, i.e. 101 B (octal) or 65 (decimal). If, in any of the subroutines a read (buffer in) encounters a parity error, a message will be printed and the program will terminate with 'STOP 13' printed in the dayfile.

SUBROUTINE: CONVERT If an approximate conversion to intensity is required when a scan is unpacked, then after the call to RUNPID the user should

CALL CONVERT (DNB, GAM)
Where:
DNB
GAM is the γ of the film or plate. This call will set a flag so that all calls to RUNPSC until the next End of File is encountered will do the density to intensity conversion. (This means

Where:

SCAN

IFLIP

that CONVERT must be called for each file for which the conversion is required).

To read and unpack one scan line CALL RUNPSC (IFLIP,SCAN)
is an integer, set $=0$ if the user requires that the data values are returned in the order in which they are read, or $=1$ if the values are to be returned in reversed order, i.e., 'flipped'. (IFLIP $=1$ will normally be used for the even numbered scans of a raster scan pattern,) and
is a 'real' array of at least NPTS words (where NPTS is the number of points in the scan) and on return from the subroutine will contain the density values or - if CONVERT was called for that file - the intensities. If an End of File is encountered while reading the scan then the first data value will be set $=-6400$, and no further reading or unpacking is done for that call of the subroutine. The same procedure will be followed if the 'scan start pattern' is not found on the first read.

SUBROUTINE: RUNSCI

Where:

ISCAN

SUBROUTINE: REOFS

IFLIP is as described for RUNPSC i.e. 0 = no flipping required, 1 = flipping needed and
This is provided as an entry in RUNPSC to enable the user to have integer values returned by the subroutine, i.e., CALL•RUNSCI (IFLIP,ISCAN) is an integer array of size at least NPTS (where NPTS is the number of points in the scan) which will contain the integer data values on return from the subroutine. (The integer value returned is equal to 400 * density, regardless of whether or not CONVERT was called for that file.) The 'End of File' encountered, and scan pattern not found procedure is as for RUNSPC, i.e., the first data value is returned as -6400., so that the user should equivalence a real variable to ISCAN (1) and check that variable for negative.

If the user wishes to ignore files or the remainder of a file it should be done with

CALL REOFS (NTAPE,N)
which will read records on unit NTAPE until N 'End of File' marks have been encountered.

Common block name(s) used NOOPDS

Other subroutine names within the set UNIN, RUNIN, UNPIN (ENTRY IN UNIN). (excluding system routines and buffers) approximately 400 (decimal)

1.3 Program Listing

CONTROL STATEMENTS FOR PROGRAM OPSCAN FOR THE CDC 6400 COMPUTER

```
MIKLOF,BN ,CM65000,T80,MT1.
REOUEST(TAPE1),S,VSN=5857B,HY,RO)
FTN.
LGO.
```

$7 / 8 / 9$

SOURCE STATEMENTS

```
    PROGRAM OPSCAN(INPUT, QUTPUT,TAPE1,PLOT,TAPE99=PLOT,PUNCH)
    COMMON/NOOPOS/NPTS,NREC,PPERR,NUNIT,MASK,LL,ICON,DN,GAM1,IN(4O1)
    DIMENSION SCAN(3000), IDETC(18), ISCAN(3000), IACCEL(3,500),NSCAN(500
    .)
        CALL RUNPID(1,IDETC)
        PRINT 200, (IDETC(I),I=1,4)
        PRINT 201, (I,IDETC(I),I=5,8)
        PRINT 202, I,IDETC(9)
        PRINT 201, (I,IDETC(I),I=10,18)
200 FORMAT (1X,4A10)
201 FORMAT (1X,2I10)
202 FORMAT (1X,I10,A10)
    K=0
    NSCANS = IDETC(8)
    OO 224 I=1,200
    CALL RUNPSC(K,SCAN)
    CALL RUNSCI(K,ISCAN)
    M=0
    DO 17 J=1,NPTS
    IF(ISCAN(J).LE,100) 18,17
18M=M+1
    NSCAN(M) EJ
17 CONTINUE
    MM=1
    I SUM=0
    J=0
    IF (M .LE. 2) GO TO 54
    DO }3\textrm{L}=2,
    IF (IABS(NSCAN(L-1)-NSCAN(L)).EO. 1) 2,4
    2 I SUM=I SUM+NSCAN(L-1)
        J=J+1
        IF (L .EQ. M) 5,3
    5 IF (MM-3) 54,55,30
55 NSCAN(L-1)=NSCAN(L)
    4 IACCEL(MM,I)=(ISUM+NSCAN(L-1))/(J+1)
        MM=MM+1
        I SUM=0
        J=0
    3 CONTINUE
        IF (IACCEL(1,I) .EO. 0) IACCEL(1,I) = IACCEL(1,I-1)
        IF (IACCEL(2,I) .EO. 0) IACCEL(2,I) = IACCEL(2,I-1)
        IF (IACCEL(3,I) ,E0. 0) IACCEL(3,I) = IACCEL(3,I-1)
30 CONTINUE
    K=1
    GO TO 223
226 K=0
223 CONTINUE
    IF (IACCEL(1,I) ,GT. 1500) IACCEL(1,I) = IACCELL(1,I-1)
    IF (IACCEL(2,I) &LT. 1500.OR.IACCEL(2,I).GT. 1650) IACCEL(2,I)
```

```
        = IACCEL(2,I-1)
        IF (IACCEL(3,I).LT. 1650) IACCEL(3,I) = IACCEL(3,I-1)
    PRINT 204, I, (IACCEL(MM,I), MM=1,3)
    224 CONTINUE
C###** MM IS THE COMPONENT
C***** I IS THE TIME VALUE
C**###* IACCEL IS THE ACCELERATION VALUE
            PRINT 204, (I, (IACCEL(MM,I), MM=1,3), I=1,NP)
            PUNCH 40, (I, IACCEL(1,I), I=1,NP)
            PUNCH 40, (I, IACCEL(3,I),I=1,NP)
        40 FORMAT ( 4(2I10))
    200 FORMAT ( 1X,4A10)
    201 FORMAT (1X,2I10)
    202 FORMAT (1X,I10,A10)
    204 FORMAT ( 1X,10I10)
        END
    SUBROUTINE RUNIN(SCAN,N)
    COMMON/NOOPDS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,DN,GAMI,IN(401)
    DIMENSION SCAN(5)
        UNPACK LL VALUES AS REAL NOS, DIVIDE THEM BY 400 TO GET THE
        DENSITY READING, AND DO THE CONVERSION TO INTENSITY IF THE
        USER HAS REQUESTED IT.
    J=N
    DO 1 Ix1,LL
    J=SHIFT(J,12)
    IS=J . AND. MASK
    S=IS/400.
    IF(ICON .EO. OI GO TO I
                IF CONVERSION NOT REOUESTED, RETURN VALUEAS DENSITY
                OTHERWISE, USING DENSITY OF BACKGROUND AND GAMMA OF FILM
                PREVIOUSLY SUPPLIED BY THE USER, RETURN THE VALUES AS
                INTENSITIES.
    0=10.*#(S-DN)-1.
    S=ABS(0)
    IF(S .EQ. O.) GO TO 1
    S=O* S**GAMI /S
    1 SCAN(1)=S
    RETURN
    END
    SUBROUTINE RUNPID(NTAPE,IDETC)
    DIMENSION IDETC(18),ICDC(27)
        5TH NOVEMBER 1973
NTAPE IS THE LOGICAL UNIT NO. OF THE FILE FROM WHICH
EVERYTHING SHOULD BE READ, AND IDETC IS AN INTEGER ARRAY
OF AT LEAST lB WORDS THAT WILL CONTAIN THE FOLLOWING INFO.
ON EXIT FROM THE SUBROUTINE.
ALL VALUES EXCEPT ID AND SCAN TYPE ARE RETURNED AS INTEGERS,
ID AND SCAN TYPE ARE RETURNED IN CDC DISPLAY CODE.
WORD(S) 1 4 =40 CHARACTER ID (CDC DISPLAY CODE) 4AlO
    5 = DX USED FOR SCAN PATTERN (MICRONS)
                =DY USED FOR SCAN PATTERN (MICRONS)
                =NO OF DATA POINTS PER SCAN
                =NO OF SCANS REQUESTED.
                =SCAN TYPE (CDC DISPLAY CODE, E, R OR F, Al)
                10 = SPEED USED FOR SCAN (MAX=255)
                11 = POSITION OF SCAN ORIGIN (O=CENTRE, 1,2,3,4 =
                    F-8
```

```
のののののnのののロ
CORNERI
= STARTING CORNER OF SCAN 1,2,3,4.
=NO OF MAG TAPE RECORDS PER SCAN
=XTRAVEL (MICRONS) FOR ONE SCAN
= YTRAVEL (MICRONS) REQUESTED
=NO OF POINTS IN EACH -FULL- MAG TAPE RECORD
=X CO-ORDINATE OF SCAN ORIGIN
=Y CO-ORDINATE OF SCAN ORIGIN
    COMMON/NOOPDS/ NPTS,NRECS,PPERRR,NUNIT,MASK,LL,ICON,DN,GAMI,IN(401)
    INTEGER PPERR
    DATA ICDC/62B,64B,60B,53B,55B,67B,61B,51B,52B,47B,45B,56B,46B,57B,
    * 50B,63B,77B,74B,54B,73B,71B,70B,72B,55B,66B,76B,65B/
    DATA MASK/7777B/,ICON/O/
        NUNIT=NTAPE
        CALL BIN
            READ WOT SHOULD BE THE ID ON THE SPECIFIED UNIT, CHECK THAT
            the read was OK aND Whether an eOF Was read.
        IFILL .EO. OI GO TO 2O
            IF yOU HIT AN EOF, then JUSt RETURN ALL the id as ZERO aND
            HOPE THAT THE USER CHECKS IT
    1500 16 I=1,18
    16 IDETC(I)=0
        RETURN
    20 IF(LENGTH(NTAPE) .NE. 12) GO TO 15
                            THE READ WAS OK, WAS IT THE RIGHT LENGTH FOR AN ID
        IF NOT, RETURN ID AS 2ERO, AS FOR END OF FILE
    M=99
    DO 50 I=1,8
    K=IN(I)
    DO 50 J=1,5
    K=SHIFT(K,12)
    L=K .AND. 377B
    N=55B
        UNPACK the ID PART (IE THE CHARACTERS) aND DUMP them IN
        THE TOP OF THE INPUT ARRAY FOR NOW, FIRST CONVERTING THEM
        FROM 8 BIT ASCII CODE TO CDC DISPLAY CODE
        ANYTHING THAT YOU DONT RECOGNISE, PUT A SPACE CHARACTER IN
        IF(L.LE. 240B .OR. L .GE. 340B) GO TO 49
        N=L-300B
        IF(L.GT. 300B .AND. L .LE. 332B) GO TO 49
        N=L-225B
        IF(L.GE. 260B .AND. L .LE. 271B) GO TO 49
        N=L-240B
        IF(L .GT. 271B) N=L-252B
        IF(L .GT. 332B) N=L-304B
        N=ICDC(N)
4 9 M = M + 1
50 IN(M)=N
    M=99
        NOW PACK the converted Characters INTO THE FIRST & WORDS OF
        IDETC, IN AIO FORMAT
```

```
        DO 55 I= 1,4
        K=0
        DO 53 J=1,10
        M=M+1
    53 K=SHIFT(K,6) .OR. IN(M)
    55 IDETC(I)=K
C
C
C
C
C
C
C
C
6 5 ~ C O N T I N U E
GET A COPY OF ANY VARIABLES THAT YOU NEED LATER
    NPTS=IDETC(7)
    NRECS=IDETC(13)
    PPERR=IDETC(16)
    RETURN
    END
    SUBROUTINE UNIN(ID,N)
    DIMENSION ID(5)
    COMMON/NOOPDS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,DN,GAMI,IN(401)
        UNPACK THREE THINGS, BITS 1 - 12, BITS 13-36, BITS 37-60.
    ID(1)=SHIFT(N,12).AND. MASK
    ID(2)=SHIFT(N,-24).AND. 77777777B
    ID(3)=N,AND. 77777777B
    RETURN
    ENTRY UNPIN
        UNPACK LL VARIABLES / DATA POINTS AS INTEGERS, EACH ONE 12
        BITS LONG.
    J=N
    DO 1 I=1,LL
    J=SHIFT(J,12)
    1 ID(I)=J.AND.MASK
    RETURN
    END
    SUBROUTINE CONVERT(DNB,GAM)
    COMMON/NOOPDS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,DN,GAMI,IN(4O1)
        USER MUST SUPPLY DNB = DENSITY OF BACKGRDUND, AND GAM = GAMMA
        OF FILM.
        THIS ROUTINE MUST BE CALLED ONCE FOR EACH FILE FOR WHICH
        INTENSITIES ARE REOUIRED (INSTEAD OF DENSITIES) AND IT MUST
        BE CALLED IMMEDIATELY AFTER THE CALL TO RUNPID.
    ICON=1
    DN= DNB
    GAMI=1./GAM
    RETURN
    END
```

```
    SUBROUTINE RUNPSC(IFLIP,SCAN)
    COMMON/NOOPDS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,DN,GAMI,IN(401)
    DIMENSION SCAN(II
    INTEGER PPERR
        SCAN IS THE ARRAY TO HOLD THE UNPACKED DENSITIES OR
        INTENSITIES, AND MUST BE LARGE ENOUGH FOR THE COMPLETE SCAN
        IFLIP=0 MEANS LHAT NO -FLIPPING- IS REQUIRED, IFLIP NON ZERO
        MEANS THAT THE UNPACKED VALUES SHOULD BE -FLIPPED- BEFORE
        EXIT FROM THE SUBROUTINE. THIS IS SO THAT RETURN SCANS OF
        RASTER SCAN PATTERNS MAY BE TURNED AROUND TO LOOK LIKE EDGE
    SCANS FOR EASE OF USE HEREAFTER.
    IFINT=0
    SET A FLAG TO SAY THAT USER REOUIRES REAL, UNPACKED VALUES
    TO BE RETURNED
    1 M=1
        LS=-4
    NO=NPTS
        NO = NUMBER OF DATA VALUES LEFT TO UNPACK
        M= FIRST WORD OF ARRAY -IN- TO UNPACK
    OO 180 I=1,NRECS
    CALL BIN
    IF(LL .EO. O) GO TO 18
15 ICON=0
        CLEAR CONVERSION FLAG WHEN EOF FOUND, AND RETURN SCAN(1) AS
        -6400. SO THAT THE USER KNOWS WOT HAPPENED.
        DO THE SAME tHING IF THE CORRECT -SCAN START PATTERN- IS
        NOT FOUND.
        SCAN(1)=-6400.
        RETURN
    18 IF(I .NE. 1) GO TO 20
        IF(IN(1).NE. 77770000777700007777B) GO TO 15
            LOOK FOR THE SCAN START PATTERN ON RECORD l OF SCAN.
    20 J=NO
        IF(NO .GT. PPERR) J=PPERR
        LL=5
        DO 25 L=1,J,5
        M=M+1
        LS=LS+5
        IF(L+4 .GT. J) LL=J-L+1
        IF(IFINT .NE. O) GO TO 23
        CALL RUNIN(SCAN(LSI,IN(MI)
            unpak values as real nos.
        GO TO 25
        23 CALL UNPIN(SCAN(LS),IN(M))
                UNPACK THE VALUES AS INTEGERS
            25 CONTINUE
        NO=NO-PPERR
180 M=0
    IF(IFLIP .EQ. O) RETURN
    IF (IFINT .EO. 1) RETURN
```

```
C
C IF THE USER WANTS THEM FLIPPING, DO IT NOW
C
        M=NPTSic
        L=NPTS
        00 200 I=1,M
        A=SCAN(I)
        SCAN(I)=SCAN(L)
        SCAN(L)=A
    200 L=L-1
        RETURN
C
c
C
    ENTRY RUNSCI
    IFINT=1
    GO TO 1
C
    END
    SUBROUTINE BIN
    COMMON/NOOPDS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,ON,GAMI,IN(401)
C
C
    BUFFER IN(NUNIT,1)(IN(1),IN(401))
        LL=0
            RETURN LL AS ZERO FOR AN ORDINARY RECORD, AND 1 FOR AN EOF
        IFIUNIT(NUNITI) 22,20,13
C
C
    14 FORMAT(1HO,2OX,*PARITY ERROR ON UNIT*,I4)
    13 PRINT 14,NUNIT
        STOP 13
    20 LL=1
        ICON=0
    22 RETURN
        END
        SUBROUTINE REOFS(NTAPE,N)
        COMMON/NOOPOS/ NPTS,NRECS,PPERR,NUNIT,MASK,LL,ICON,ON,GAMI,IN(401)
C
C
        NUNIT = NTAPE
        OO 10 Is 1,N
        5 CALL BIN
        IFILL .EQ. O) GO TO 5
            KEEP READING TILL YOU HIT AN EOF
    10 CONTINUE
        RETURN
        END
```


REFERENCES

1. Halverson, Harry T. , "The Strong Motion Accelerograph", Proceedings of the Third World Conference on Earthquake Engineering, New Zealand, 1965, pp. III 75 - III 85.
2. Anderson, J. A., and Wood, H. O., "Description and Theory of the Torsion Seismometer", Bulletin - Seismological Society of America, Vol. 15, March 1925, pp. 1-75.
3. Hudson, Donald E., "Ground Motion Measurements", Earthquake Engineering, Prentice-Ha11, Inc., 1970, pp. 112-117.
4. Trifunac, M. D., Brady, A. G., and Hudson, D.E., Strong Motion Earthquake Accelerograms Digitized andPlotted Data, Vol. II, Corrected Accelerograms and Integrated Ground Velocity and Displacement Curves, Part C, Accelerograms IiC041 through IiC055, Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, February 1973, p. 10.
5. Sixsmith, Edmund C. D., and Roosset, V., "Statistical Properties of Strong Motion Earthquakes", Research Report R70-7, Dept. of Civil Engineering, MIT, Cambridge, Mass., January 1970.
6. Jensclke, V., Clough, R. W., and Pensier, J., "Analysis of Earth Motion Accelerograms", Structural and Materials Research Report SES M64-1, Dept. of Civil Engineering, University of California, Berkeley, California, January 1964.
7. Boyce, W. H., "Analysis of Earthquake Accelerograms", Bulletin No. 1, Civil Engineering Department, PAPUA and New Guinea Institute of Technology, New Guinea, 1970.
8. Brady, A. G., Hudson, D. E., Trifunac, M. D., Strong Motion Earthquake Accelerograms, Digitized and Plotted Data, Vol. I, Part C, Accelerograms from the San Fernando, California Earthquake, Report No. EERL 71-20, California Institute of Technology, Earthquake Engineering Research Laboratory, Pasadena, California, July 1971.
9. Trifunac, M. D., Low Frequency Digitization Errors and a New Method for Zero Baseline Correction of Strong Motion Accelerograms, Report No. EERL 20-07, California Institute of Technology, Earthquake Engineering Research Laboratory, Pasadena, California, September, 1970.
G-1
10. Trifunac, M. D., and Lee, V., Routine Computer Processsing of Strong Motion Accelerograms, Report No. EERL 73-03, California Institute of Technology, Earthquake Engineering Research Laboratory, October, 1973. Available as NTIS Report PB226047.
11. Trifunac, M. D., Udwadia, F.E., and Brady, A.G., High Frequency Error and Instrument Corrections of Strong-Motion Accelerograms, Report No. EERL 71-05, California Institute of Technology, Earthquake Engineering Research Laboratory, July, 1971.
12. Trifunac, M.D., Brady, A.G., and Hudson, D.E., Strong Motion Earthquake Accelerogram Digitized and Method Data,Vol. II., "Corrected Accelerogram and Integrated Ground velocity and Displacement Curves, Part A, Accelerograms II A001 through 4A020," Earthquake Engineering Research Laboratory, Cal. Tech., Pasadena, California, September, 1971, p. 8-25.
13. Trifunac, M.D., et. al., "Analysis of Errors in Digitized Strong Motion Accelerograms," Bulletin of the Seismological Society of America, February, 1973, pp 157-187.
14. Ormsby, J.F., "Design of Numerical Filters with Application to Missile Data Processing," Journal of the Association for Computer Machinery, 1961, pp. 440-447.
15. Halloway, L.I., "Smooting and Filtering of Time Series and Space Fields," Advances in Biophysics, No. 4, 1958, pp. 351-389.
16. Reference $12, \mathrm{p} .17$.
17. Reference 12 , p. 18 .
18. Berg, G.V., and Housner, G.W., "Integrated Velocity and Displacement of Strong Earthquake Ground Motion", Bulletin of the Seismological Society of America, Vol. 37, April, 1961, pp. 175-189.
19. Reference 3, p. 111.
20. Trifunac, M.D., and Lee, V.W., "Note on the Accuracy of Computed Ground Displacements from Strong-Motion Accelerograms," Bulletin of the Seismological Society of America, Vol. 64, No. 4, August, 1974, pp. 1209-1219.
21. Protter, M.H., and Morrey, C.B., Jr., College Calculus with Analytic Geometry, Second Edition, Addison Wesley Publishing Co., Reading, Mass. 1970, p. 546.

FHWA

R\&D

[^0]: FIRST 28 SECONDS OF STRONG MOTION ACCELEROGRAM, PACOIMA DAM, SAN FERNANDO EARTHQUAKE, FEBRUARY 9, 1971

 FIGURE 1.
 The $\mathrm{S} 16^{\circ} \mathrm{E}$ record is identified as $\mathrm{S} 14^{\mathrm{O}} \mathrm{W}$ in other publications. 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

[^1]: * Numbers in () refer to references listed in Appendix G.

[^2]: * Several publications list this as the $874^{\circ} \mathrm{W}$ component. However, the new component designation was printed on the record received by the authors from the U.S. Geological Survey.

[^3]: * DAISMA - Digitization and Integration of Strong Motion Accelerograms.

[^4]: * Manufactured by Electrak Corporation, 16634 Oakmont Avenue, Gaithersburg, Maryland 20760.
 ** The terms TRAK 100 and Electrak are used synonymously throughout this report.

[^5]: * Default allows the origin to remain at the lower left corner of the table.
 ** First 6 bits is used to record the character information, while the seventh bit is used to check for parity errors. Even parity is recorded by the Electrak when seven-track tape is used. See page 26 for information on nine-track tape.

[^6]: * The authors believe that these instructions hold for all Benson-Lehner machines. However, the reader is advised to check his instruction manual for variations.

[^7]: * Range reset switch, Figure 25.

[^8]: * It should be noted that the terms "record" and "accelerogram are used synonymously in this section of the report.

[^9]: * Including corrections after plotting, using PHASE1.

[^10]: \star The use of a measuring magnifier as for the Electrak machine will help to define the point in the center of the curve path.

[^11]: * Baseline corrected means that the Y position of the fixed trace has been subtraced from the Y position of the acceleration trace using an interpolation scheme in the PHASEl subroutine.
 ** Perkin-Elmer Corporation, Boller \& Chivens Division, 916 Meridian Avenue, South Pasadena, California 91030.

[^12]: \# A micron for this machine is depicted to be 10^{-6} meters or 10^{-4} centimeters.

[^13]: * Obtained from the Solar Division, Kitt Peak National Observatory, and revised for use in digitizing.

[^14]: $亠$ The program which duplicates the flowchart of reference 10 will hereafter be referred to as the Cal Tech program.

[^15]: * N4WAY $=1$ is a variation not germane to this discussion and is described in Appendix C, p. C-10.

[^16]: * Reference (19) states that "a strong motion accelerometer should record accurately over a period range of 0.1 to at least three or four seconds and maybe to ten seconds."

[^17]: * Manufactured by Kistler Instruments Company, Overlake Industrial Park, Redmond, Washington 98052.

[^18]: * Applicable only for CDC 6400 Computer.

